Concept

Junction tree algorithm

Summary
The junction tree algorithm (also known as 'Clique Tree') is a method used in machine learning to extract marginalization in general graphs. In essence, it entails performing belief propagation on a modified graph called a junction tree. The graph is called a tree because it branches into different sections of data; nodes of variables are the branches. The basic premise is to eliminate cycles by clustering them into single nodes. Multiple extensive classes of queries can be compiled at the same time into larger structures of data. There are different algorithms to meet specific needs and for what needs to be calculated. Inference algorithms gather new developments in the data and calculate it based on the new information provided. If the graph is directed then moralize it to make it un-directed. Introduce the evidence. Triangulate the graph to make it chordal. Construct a junction tree from the triangulated graph (we will call the vertices of the junction tree "supernodes"). Propagate the probabilities along the junction tree (via belief propagation) Note that this last step is inefficient for graphs of large treewidth. Computing the messages to pass between supernodes involves doing exact marginalization over the variables in both supernodes. Performing this algorithm for a graph with treewidth k will thus have at least one computation which takes time exponential in k. It is a message passing algorithm. The Hugin algorithm takes fewer computations to find a solution compared to Shafer-Shenoy. Computed recursively Multiple recursions of the Shafer-Shenoy algorithm results in Hugin algorithm Found by the message passing equation Separator potentials are not stored The Shafer-Shenoy algorithm is the sum product of a junction tree. It is used because it runs programs and queries more efficiently than the Hugin algorithm. The algorithm makes calculations for conditionals for belief functions possible. Joint distributions are needed to make local computations happen.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.