A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.
Generally, probabilistic graphical models use a graph-based representation as the foundation for encoding a distribution over a multi-dimensional space and a graph that is a compact or factorized representation of a set of independences that hold in the specific distribution. Two branches of graphical representations of distributions are commonly used, namely, Bayesian networks and Markov random fields. Both families encompass the properties of factorization and independences, but they differ in the set of independences they can encode and the factorization of the distribution that they induce.
The undirected graph shown may have one of several interpretations; the common feature is that the presence of an edge implies some sort of dependence between the corresponding random variables. From this graph we might deduce that are all mutually independent, once is known, or (equivalently in this case) that
for some non-negative functions .
Bayesian network
If the network structure of the model is a directed acyclic graph, the model represents a factorization of the joint probability of all random variables. More precisely, if the events are then the joint probability satisfies
where is the set of parents of node (nodes with edges directed towards ). In other words, the joint distribution factors into a product of conditional distributions. For example, in the directed acyclic graph shown in the Figure this factorization would be
Any two nodes are conditionally independent given the values of their parents. In general, any two sets of nodes are conditionally independent given a third set if a criterion called d-separation holds in the graph. Local independences and global independences are equivalent in Bayesian networks.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
The objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
In statistics, naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features (see Bayes classifier). They are among the simplest Bayesian network models, but coupled with kernel density estimation, they can achieve high accuracy levels. Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem.
A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). It is one of several forms of causal notation. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms.
On propose dans ce MOOC de se former à et avec Thymio :
apprendre à programmer le robot Thymio et ce faisant, s’initier
à l'informatique et la robotique.
In diesem Kurs handelt es sich um das Verständnis der grundlegenden Mechanismen eines Roboters wie Thymio, seiner Programmierung mit verschiedenen Sprachen und seiner Verwendung im Unterricht mit den
In diesem Kurs handelt es sich um das Verständnis der grundlegenden Mechanismen eines Roboters wie Thymio, seiner Programmierung mit verschiedenen Sprachen und seiner Verwendung im Unterricht mit den
Many applications, e.g. in content recommendation, sports, or recruitment, leverage the comparisons of alternatives to score those alternatives. The classical Bradley-Terry model and its variants have been widely used to do so. The historical model conside ...
AAAI Press2024
Measuring the intensity of events is crucial for monitoring and tracking armed conflict. Advances in automated event extraction have yielded massive data sets of '' who did what to whom '' micro-records that enable datadriven approaches to monitoring confl ...
Learning-based outlier (mismatched correspondence) rejection for robust 3D registration generally formulates the outlier removal as an inlier/outlier classification problem. The core for this to be successful is to learn the discriminative inlier/outlier f ...