In aerospace engineering, concerning aircraft, rocket and spacecraft design, overall propulsion system efficiency is the efficiency with which the energy contained in a vehicle's fuel is converted into kinetic energy of the vehicle, to accelerate it, or to replace losses due to aerodynamic drag or gravity. Mathematically, it is represented as , where is the cycle efficiency and is the propulsive efficiency. The cycle efficiency is expressed as the percentage of the heat energy in the fuel that is converted to mechanical energy in the engine, and the propulsive efficiency is expressed as the proportion of the mechanical energy actually used to propel the aircraft. The propulsive efficiency is always less than one, because conservation of momentum requires that the exhaust have some of the kinetic energy, and the propulsive mechanism (whether propeller, jet exhaust, or ducted fan) is never perfectly efficient. It is greatly dependent on exhaust expulsion velocity and airspeed. Heat engine#Efficiency Most aerospace vehicles are propelled by heat engines of some kind, usually an internal combustion engine. The efficiency of a heat engine relates how much useful work is output for a given amount of heat energy input. From the laws of thermodynamics: where is the work extracted from the engine. (It is negative because work is done by the engine.) is the heat energy taken from the high-temperature system (heat source). (It is negative because heat is extracted from the source, hence is positive.) is the heat energy delivered to the low-temperature system (heat sink). (It is positive because heat is added to the sink.) In other words, a heat engine absorbs heat from some heat source, converting part of it to useful work, and delivering the rest to a heat sink at lower temperature. In an engine, efficiency is defined as the ratio of useful work done to energy expended. The theoretical maximum efficiency of a heat engine, the Carnot efficiency, depends only on its operating temperatures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (3)
Related publications (10)

Plasmoid drift and first wall heat deposition during ITER H-mode dual-SPIs in JOREK simulations

Mengdi Kong

The heat flux mitigation during the thermal quench (TQ) by the shattered pellet injection (SPI) is one of the major elements of disruption mitigation strategy for ITER. It's efficiency greatly depends on the SPI and the target plasma parameters, and is ult ...
Iop Publishing Ltd2024

Locomotion of Sensor‐Integrated Soft Robotic Devices Inside Sub‐Millimeter Arteries with Impaired Flow Conditions

Diego Ghezzi, Mahmut Selman Sakar, Lorenzo Francesco John Noseda, Amit Yedidia Dolev, Adele Fanelli

One of the grand challenges in interventional cardiology and neuroradiology is to minimize the operation time and risk of damage during catheterization. These two factors drastically increase if the target location resides in small and tortuous vessels. Fl ...
Wiley2022

A Morphing Cargo Drone for Safe Flight in Proximity of Humans

Dario Floreano, Przemyslaw Mariusz Kornatowski, William John Stewart, Mir Alikhan Bin Mohammad Feroskhan

Delivery drones used by logistics companies today are equipped with unshielded propellers, which represent a major hurdle for in-hand parcel delivery. The exposed propeller blades are hazardous to unsuspecting bystanders, pets, and untrained users. One sol ...
2020
Show more
Related concepts (5)
Aerospace engineering
Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is similar, but deals with the electronics side of aerospace engineering. "Aeronautical engineering" was the original term for the field. As flight technology advanced to include vehicles operating in outer space, the broader term "aerospace engineering" has come into use.
Jet engine
A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas (usually air) that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, or pulse jet. In general, jet engines are internal combustion engines.
Turboprop
A turboprop is a turbine engine that drives an aircraft propeller. A turboprop consists of an intake, reduction gearbox, compressor, combustor, turbine, and a propelling nozzle. Air enters the intake and is compressed by the compressor. Fuel is then added to the compressed air in the combustor, where the fuel-air mixture then combusts. The hot combustion gases expand through the turbine stages, generating power at the point of exhaust. Some of the power generated by the turbine is used to drive the compressor and electric generator.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.