A directional derivative is a concept in multivariable calculus that measures the rate at which a function changes in a particular direction at a given point. The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a velocity specified by v. The directional derivative of a scalar function f with respect to a vector v at a point (e.g., position) x may be denoted by any of the following: It therefore generalizes the notion of a partial derivative, in which the rate of change is taken along one of the curvilinear coordinate curves, all other coordinates being constant. The directional derivative is a special case of the Gateaux derivative. The directional derivative of a scalar function along a vector is the function defined by the limit This definition is valid in a broad range of contexts, for example where the norm of a vector (and hence a unit vector) is undefined. If the function f is differentiable at x, then the directional derivative exists along any unit vector v at x, and one has where the on the right denotes the gradient, is the dot product and v is a unit vector. This follows from defining a path and using the definition of the derivative as a limit which can be calculated along this path to get: Intuitively, the directional derivative of f at a point x represents the rate of change of f, in the direction of v with respect to time, when moving past x. In a Euclidean space, some authors define the directional derivative to be with respect to an arbitrary nonzero vector v after normalization, thus being independent of its magnitude and depending only on its direction. This definition gives the rate of increase of f per unit of distance moved in the direction given by v. In this case, one has or in case f is differentiable at x, In the context of a function on a Euclidean space, some texts restrict the vector v to being a unit vector.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.