Semiprimitive ringIn algebra, a semiprimitive ring or Jacobson semisimple ring or J-semisimple ring is a ring whose Jacobson radical is zero. This is a type of ring more general than a semisimple ring, but where simple modules still provide enough information about the ring. Rings such as the ring of integers are semiprimitive, and an artinian semiprimitive ring is just a semisimple ring. Semiprimitive rings can be understood as subdirect products of primitive rings, which are described by the Jacobson density theorem.
Krull dimensionIn commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal I in a polynomial ring R is the Krull dimension of R/I.
Hilbert's basis theoremIn mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian. If is a ring, let denote the ring of polynomials in the indeterminate over . Hilbert proved that if is "not too large", in the sense that if is Noetherian, the same must be true for . Formally, Hilbert's Basis Theorem. If is a Noetherian ring, then is a Noetherian ring. Corollary. If is a Noetherian ring, then is a Noetherian ring.
Maximal idealIn mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all proper ideals. In other words, I is a maximal ideal of a ring R if there are no other ideals contained between I and R. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields.
Noetherian ringIn mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left (or right) ideals has a largest element; that is, there exists an n such that: Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated.
Product of ringsIn mathematics, a product of rings or direct product of rings is a ring that is formed by the Cartesian product of the underlying sets of several rings (possibly an infinity), equipped with componentwise operations. It is a direct product in the . Since direct products are defined up to an isomorphism, one says colloquially that a ring is the product of some rings if it is isomorphic to the direct product of these rings.
Nilpotent idealIn mathematics, more specifically ring theory, an ideal I of a ring R is said to be a nilpotent ideal if there exists a natural number k such that I k = 0. By I k, it is meant the additive subgroup generated by the set of all products of k elements in I. Therefore, I is nilpotent if and only if there is a natural number k such that the product of any k elements of I is 0. The notion of a nilpotent ideal is much stronger than that of a nil ideal in many classes of rings.
Semisimple algebraIn ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical (only the zero element of the algebra is in the Jacobson radical). If the algebra is finite-dimensional this is equivalent to saying that it can be expressed as a Cartesian product of simple subalgebras. The Jacobson radical of an algebra over a field is the ideal consisting of all elements that annihilate every simple left-module.
Minimal idealIn the branch of abstract algebra known as ring theory, a minimal right ideal of a ring R is a non-zero right ideal which contains no other non-zero right ideal. Likewise, a minimal left ideal is a non-zero left ideal of R containing no other non-zero left ideals of R, and a minimal ideal of R is a non-zero ideal containing no other non-zero two-sided ideal of R . In other words, minimal right ideals are minimal elements of the partially ordered set (poset) of non-zero right ideals of R ordered by inclusion.
Dimension theory (algebra)In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety (and by extension that of a scheme). The need of a theory for such an apparently simple notion results from the existence of many definitions of dimension that are equivalent only in the most regular cases (see Dimension of an algebraic variety).