Summary
A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance (endogenous or induced) to generate a biological signal. This signal may be in the form of an action potential, if the chemoreceptor is a neuron, or in the form of a neurotransmitter that can activate a nerve fiber if the chemoreceptor is a specialized cell, such as taste receptors, or an internal peripheral chemoreceptor, such as the carotid bodies. In physiology, a chemoreceptor detects changes in the normal environment, such as an increase in blood levels of carbon dioxide (hypercapnia) or a decrease in blood levels of oxygen (hypoxia), and transmits that information to the central nervous system which engages body responses to restore homeostasis. In bacteria, chemoreceptors are essential in the mediation of chemotaxis. Bacteria utilize complex long helical proteins as chemoreceptors, permitting signals to travel long distances across the cell's membrane. Chemoreceptors allow bacteria to react to chemical stimuli in their environment and regulate their movement accordingly. In archaea, transmembrane receptors comprise only 57% of chemoreceptors, while in bacteria the percentage rises to 87%. This is an indicator that chemoreceptors play a heightened role in the sensing of cytosolic signals in archaea. Primary cilia, present in many types of mammalian cells, serve as cellular antennae. The motile function of these cilia is lost in favour of their sensory specialization. Plants have various mechanisms to perceive danger in their environment. Plants are able to detect pathogens and microbes through surface level receptor kinases (PRK). Additionally, receptor-like proteins (RLPs) containing ligand binding receptor domains capture pathogen-associated molecular patterns (PAMPS) and damage-associated molecular patterns (DAMPS) which consequently initiates the plant's innate immunity for a defense response. Plant receptor kinases are also used for growth and hormone induction among other important biochemical processes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.