Mario PaoloneMario Paolone received the M.Sc. (with honors) and the Ph.D. degree in electrical engineering from the University of Bologna, Italy, in 1998 and 2002, respectively. In 2005, he was appointed assistant professor in power systems at the University of Bologna where he was with the Power Systems laboratory until 2011. In 2010, he received the Associate Professor eligibility from the Politecnico di Milano, Italy. Since 2011 he joined the Swiss Federal Institute of Technology, Lausanne, Switzerland, where he is now Full Professor, Chair of the Distributed Electrical Systems laboratory and Head of the Swiss Competence Center for Energy Research (SCCER) FURIES (Future Swiss Electrical infrastructure). He was co-chairperson of the technical programme committees of the 9th edition of the International Conference of Power Systems Transients (IPST 2009) and of the 2016 Power Systems Computation Conference (PSCC 2016). He was chair of the technical programme committee of the 2018 Power Systems Computation Conference (PSCC 2018). In 2013, he was the recipient of the IEEE EMC Society Technical Achievement Award. He was co-author of several papers that received the following awards: best IEEE Transactions on EMC paper award for the year 2017, in 2014 best paper award at the 13th International Conference on Probabilistic Methods Applied to Power Systems, Durham, UK, in 2013 Basil Papadias best paper award at the 2013 IEEE PowerTech, Grenoble, France, in 2008 best paper award at the International Universities Power Engineering Conference (UPEC). He was the founder Editor-in-Chief of the Elsevier journal Sustainable Energy, Grids and Networks and was Associate Editor of the IEEE Transactions on Industrial Informatics. His research interests are in power systems with particular reference to real-time monitoring and operation, power system protections, power systems dynamics and power system transients. Mario Paolone is author or coauthor of over 300 scientific papers published in reviewed journals and international conferences.
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Pedro Miguel Nunes Pereira de Almeida ReisPedro M. Reis is a Professor of Mechanical Engineering at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, where he is the Director of the Institute of Mechanical Engineering. Prof. Reis received a B.Sc. in Physics from the University of Manchester, UK (1999), a Certificate of Advanced Studies in Mathematics (Part III Maths) from St. John’s College and DAMTP, University of Cambridge (2000), and a Ph.D. in physics from the University of Manchester (2004). He was a postdoc at the City College of New York (2004-2005) and at the CNRS/ESPCI in Paris (2005-2007). He joined MIT in 2007 as an Instructor in Applied Mathematics. In 2010 he moved to MIT’s School of Engineering, with dual appointments in Mechanical Engineering and Civil & Environmental Engineering, first as the Esther and Harold E. Edgerton Assistant Professor and, since the summer of 2014 as Gilbert W. Winslow Associate Professor. In October 2013, the Popular Science magazine named Prof. Reis to its 2013 “Brilliant 10” list of young stars in Science and Technology. He has received the 2014 CAREER Award (NSF), the 2016 Thomas J.R. Hughes Young Investigator Award (Applied Mechanics Division of the ASME), the 2016 GSOFT Early Career Award for Soft Matter Research (APS), he is a Fellow of the APS, and he is the 2021 President of the Society of Engineering Science (SES).
Dario FloreanoProf. Dario Floreano is director of the Laboratory of Intelligent Systems at the Swiss Federal Institute of Technology Lausanne (EPFL). Since 2010, he is the founding director of the Swiss National Center of Competence in Robotics, a research program that brings together more than 20 labs across Switzerland. Prof. Floreano holds an M.A. in Vision, an M.S. in Neural Computation, and a PhD in Robotics. He has held research positions at Sony Computer Science Laboratory, at Caltech/JPL, and at Harvard University. His main research interests are Robotics and A.I. at the convergence of biology and engineering. Prof. Floreano made pioneering contributions to the fields of evolutionary robotics, aerial robotics, and soft robotics. He served in numerous advisory boards and committees, including the Future and Emerging Technologies division of the European Commission, the World Economic Forum Agenda Council, the International Society of Artificial Life, the International Neural Network Society, and in the editorial committee of several scientific journals. In addition, he helped spinning off two drone companies (senseFly.com and Flyability.com) and a non-for-profit portal on robotics and A.I. (RoboHub.org). Books
Manuale sulle Reti Neurali, il Mulino (in Italian), 1996 (first edition), 2006 (second edition)Evolutionary Robotics, MIT Press, 2000
Bio-Inspired Artificial Intelligence, MIT Press, 2008
Flying Insects and Robots, Springer Verlag, 2010