Summary
In physics and astronomy, an N-body simulation is a simulation of a dynamical system of particles, usually under the influence of physical forces, such as gravity (see n-body problem for other applications). N-body simulations are widely used tools in astrophysics, from investigating the dynamics of few-body systems like the Earth-Moon-Sun system to understanding the evolution of the large-scale structure of the universe. In physical cosmology, N-body simulations are used to study processes of non-linear structure formation such as galaxy filaments and galaxy halos from the influence of dark matter. Direct N-body simulations are used to study the dynamical evolution of star clusters. The 'particles' treated by the simulation may or may not correspond to physical objects which are particulate in nature. For example, an N-body simulation of a star cluster might have a particle per star, so each particle has some physical significance. On the other hand, a simulation of a gas cloud cannot afford to have a particle for each atom or molecule of gas as this would require on the order of e23 particles for each mole of material (see Avogadro constant), so a single 'particle' would represent some much larger quantity of gas (often implemented using Smoothed Particle Hydrodynamics). This quantity need not have any physical significance, but must be chosen as a compromise between accuracy and manageable computer requirements. Dark matter plays an important role in the formation of galaxies. The time evolution of the density f (in phase space) of dark matter particles, can be described by the collisionless Boltzmann equation In the equation, is the velocity, and Φ is the gravitational potential given by Poisson's Equation. These two coupled equations are solved in an expanding background Universe, which is governed by the Friedmann equations, after determining the initial conditions of dark matter particles. The conventional method employed for initializing positions and velocities of dark matter particles involves moving particles within a uniform Cartesian lattice or a glass-like particle configuration.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.