In mathematics, Hadamard's gamma function, named after Jacques Hadamard, is an extension of the factorial function, different from the classical gamma function (it is an instance of a pseudogamma function.) This function, with its argument shifted down by 1, interpolates the factorial and extends it to real and complex numbers in a different way than Euler's gamma function. It is defined as:
where Γ(x) denotes the classical gamma function. If n is a positive integer, then:
Unlike the classical gamma function, Hadamard's gamma function H(x) is an entire function, i.e. it has no poles in its domain. It satisfies the functional equation
with the understanding that is taken to be 0 for positive integer values of x.
Hadamard's gamma can also be expressed as
and as
where ψ(x) denotes the digamma function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Calcul différentiel et intégral.
Eléments d'analyse complexe.
In mathematics, the gamma function (represented by Γ, the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n, Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles.
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
Many problems in distributed computing are impossible to solve when no information about process failures is available. It is common to ask what information about failures is necessary and sufficient to circumvent some specific impossibility, e. g., consen ...
Springer Verlag2009
,
For any prime power q, Mori and Tanaka introduced a family of q-ary polar codes based on the q x q Reed-Solomon polarization kernels. For transmission over a q-ary erasure channel, they also derived a closed-form recursion for the erasure probability of ea ...