Concept

Hadamard's gamma function

In mathematics, Hadamard's gamma function, named after Jacques Hadamard, is an extension of the factorial function, different from the classical gamma function (it is an instance of a pseudogamma function.) This function, with its argument shifted down by 1, interpolates the factorial and extends it to real and complex numbers in a different way than Euler's gamma function. It is defined as: where Γ(x) denotes the classical gamma function. If n is a positive integer, then: Unlike the classical gamma function, Hadamard's gamma function H(x) is an entire function, i.e. it has no poles in its domain. It satisfies the functional equation with the understanding that is taken to be 0 for positive integer values of x. Hadamard's gamma can also be expressed as and as where ψ(x) denotes the digamma function.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.