Related concepts (24)
Triangular number
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The nth triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is The triangular numbers are given by the following explicit formulas: where , does not mean division, but is the notation for a binomial coefficient.
Falling and rising factorials
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, rising sequential product, or upper factorial) is defined as The value of each is taken to be 1 (an empty product) when These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n , where n is a non-negative integer.
Binomial coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula which using factorial notation can be compactly expressed as For example, the fourth power of 1 + x is and the binomial coefficient is the coefficient of the x2 term.
Binomial theorem
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example, for n = 4, The coefficient a in the term of axbyc is known as the binomial coefficient or (the two have the same value).
Pascal's rule
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients. It states that for positive natural numbers n and k, where is a binomial coefficient; one interpretation of the coefficient of the xk term in the expansion of (1 + x)n. There is no restriction on the relative sizes of n and k, since, if n < k the value of the binomial coefficient is zero and the identity remains valid. Pascal's rule can also be viewed as a statement that the formula solves the linear two-dimensional difference equation over the natural numbers.
Multinomial theorem
In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials. For any positive integer m and any non-negative integer n, the multinomial formula describes how a sum with m terms expands when raised to an arbitrary power n: where is a multinomial coefficient. The sum is taken over all combinations of nonnegative integer indices k_1 through k_m such that the sum of all k_i is n.
Recurrence relation
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In linear recurrences, the nth term is equated to a linear function of the previous terms.
Combination
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. So, two combinations are identical if and only if each combination has the same members.
Factorization
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4. Factorization is not usually considered meaningful within number systems possessing division, such as the real or complex numbers, since any can be trivially written as whenever is not zero.
Central binomial coefficient
In mathematics the nth central binomial coefficient is the particular binomial coefficient They are called central since they show up exactly in the middle of the even-numbered rows in Pascal's triangle. The first few central binomial coefficients starting at n = 0 are: , , , , , 924, 3432, 12870, 48620, ...; The central binomial coefficient is the number of arrangements where there are an equal number of two types of objects.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.