In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.
Factorization is not usually considered meaningful within number systems possessing division, such as the real or complex numbers, since any can be trivially written as whenever is not zero. However, a meaningful factorization for a rational number or a rational function can be obtained by writing it in lowest terms and separately factoring its numerator and denominator.
Factorization was first considered by ancient Greek mathematicians in the case of integers. They proved the fundamental theorem of arithmetic, which asserts that every positive integer may be factored into a product of prime numbers, which cannot be further factored into integers greater than 1. Moreover, this factorization is unique up to the order of the factors. Although integer factorization is a sort of inverse to multiplication, it is much more difficult algorithmically, a fact which is exploited in the RSA cryptosystem to implement public-key cryptography.
Polynomial factorization has also been studied for centuries. In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials. In particular, a univariate polynomial with complex coefficients admits a unique (up to ordering) factorization into linear polynomials: this is a version of the fundamental theorem of algebra. In this case, the factorization can be done with root-finding algorithms. The case of polynomials with integer coefficients is fundamental for computer algebra.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Machine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.
The objective of this course is to provide the necessary background for designing efficient parallel algorithms in scientific computing as well as in the analysis of large volumes of data. The operati
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
In algebra, a cubic equation in one variable is an equation of the form in which a is nonzero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means: algebraically: more precisely, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations, square roots and cube roots.
In algebra, a quartic function is a function of the form where a is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form where a ≠ 0. The derivative of a quartic function is a cubic function.
In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit. It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime.
We introduce two new approximation methods for the numerical evaluation of the long-range component of the range-separated Coulomb potential and the approximation of the resulting high dimensional Two-Electron Integrals tensor (TEI) with long-range interac ...
Let X be a complex projective K3 surface and let T-X be its transcendental lattice; the characteristic polynomials of isometries of T-X induced by automorphisms of X are powers of cyclotomic polynomials. Which powers of cyclotomic polynomials occur? The ai ...
Recent transformer language models achieve outstanding results in many natural language processing (NLP) tasks. However, their enormous size often makes them impractical on memory-constrained devices, requiring practitioners to compress them to smaller net ...