Adrien-Marie Legendre (ləˈʒɑːndər,_-ˈʒɑːnd; adʁiɛ̃ maʁi ləʒɑ̃dʁ; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are named after him.
Adrien-Marie Legendre was born in Paris on 18 September 1752 to a wealthy family. He received his education at the Collège Mazarin in Paris, and defended his thesis in physics and mathematics in 1770. He taught at the École Militaire in Paris from 1775 to 1780 and at the École Normale from 1795. At the same time, he was associated with the Bureau des Longitudes. In 1782, the Berlin Academy awarded Legendre a prize for his treatise on projectiles in resistant media. This treatise also brought him to the attention of Lagrange.
The Académie des sciences made Legendre an adjoint member in 1783 and an associate in 1785. In 1789, he was elected a Fellow of the Royal Society.
He assisted with the Anglo-French Survey (1784–1790) to calculate the precise distance between the Paris Observatory and the Royal Greenwich Observatory by means of trigonometry. To this end in 1787 he visited Dover and London together with Dominique, comte de Cassini and Pierre Méchain. The three also visited William Herschel, the discoverer of the planet Uranus.
Legendre lost his private fortune in 1793 during the French Revolution. That year, he also married Marguerite-Claudine Couhin, who helped him put his affairs in order. In 1795, Legendre became one of six members of the mathematics section of the reconstituted Académie des Sciences, renamed the Institut National des Sciences et des Arts. Later, in 1803, Napoleon reorganized the Institut National, and Legendre became a member of the Geometry section. From 1799 to 1812, Legendre served as mathematics examiner for graduating artillery students at the École Militaire and from 1799 to 1815 he served as permanent mathematics examiner for the École Polytechnique.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Pierre-Simon, Marquis de Laplace (ləˈplɑ:s; pjɛʁ simɔ̃ laplas; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized and extended the work of his predecessors in his five-volume Mécanique céleste (Celestial Mechanics) (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Jacques Salomon Hadamard (adamaʁ; 8 December 1865 – 17 October 1963) was a French mathematician who made major contributions in number theory, complex analysis, differential geometry and partial differential equations. The son of a teacher, Amédée Hadamard, of Jewish descent, and Claire Marie Jeanne Picard, Hadamard was born in Versailles, France and attended the Lycée Charlemagne and Lycée Louis-le-Grand, where his father taught. In 1884 Hadamard entered the École Normale Supérieure, having placed first in the entrance examinations both there and at the École Polytechnique.
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
La modélisation numérique des solides est abordée à travers la méthode des éléments finis. Les aspects purement analytiques sont d'abord présentés, puis les moyens d'interpolation, d'intégration et de
Explores primes in arithmetic progression, focusing on L-functions, characters, and the divergence of the sum of 1 over p for p congruent to a modulo q.
Covers the general oscillation period equation, initial conditions, integration, elliptic integrals, Legendre polynomials, work, kinetic energy, and power.
Nos sociétés qui depuis toujours reposaient largement sur l’artisanat comme ensemble de savoir-faire transmis de génération en génération, semblent le délaisser de nos jours. Le savoir-faire artisanal propose pourtant une démarche à la fois conceptuelle et ...
Objet d’une héroïsation précoce et durable, notamment à travers la littérature, le travail des mécaniciens et chauffeurs de locomotives à vapeur reste mal connu du point de vue de ses effets sur l’environnement et sur la santé des travailleurs eux-mêmes. ...
Cette conférence vous amènera à (re)découvrir les multiples facettes de notre exposition à la lumière du jour, à travers l'angle de la recherche. De ses bienfaits physioloiques à la complexité de maîtriser l'éclairage naturel pour assurer notre confort, l' ...