In mathematics and theoretical computer science, a constant-recursive sequence is an infinite sequence of numbers where each number in the sequence is equal to a fixed linear combination of one or more of its immediate predecessors. A constant-recursive sequence is also known as a linear recurrence sequence, linear-recursive sequence, linear-recurrent sequence, a C-finite sequence, or a solution to a linear recurrence with constant coefficients. The most famous example of a constant-recursive sequence is the Fibonacci sequence , in which each number is the sum of the previous two. The power of two sequence is also constant-recursive because each number is the sum of twice the previous number. The square number sequence is also constant-recursive. However, not all sequences are constant-recursive; for example, the factorial sequence is not constant-recursive. All arithmetic progressions, all geometric progressions, and all polynomials are constant-recursive. Formally, a sequence of numbers is constant-recursive if it satisfies a recurrence relation where are constants. For example, the Fibonacci sequence satisfies the recurrence relation where is the th Fibonacci number. Constant-recursive sequences are studied in combinatorics and the theory of finite differences. They also arise in algebraic number theory, due to the relation of the sequence to the roots of a polynomial; in the analysis of algorithms as the running time of simple recursive functions; and in formal language theory, where they count strings up to a given length in a regular language. Constant-recursive sequences are closed under important mathematical operations such as term-wise addition, term-wise multiplication, and Cauchy product. The Skolem–Mahler–Lech theorem states that the zeros of a constant-recursive sequence have a regularly repeating (eventually periodic) form. On the other hand, the Skolem problem, which asks for an algorithm to determine whether a linear recurrence has at least one zero, is a famous unsolved problem in mathematics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(en): Analysis I (English)
We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.
Show more
Related lectures (45)
Sequences: Induction Method
Covers sequences, induction method, Fibonacci, Bernoulli's inequality, and binomial formula.
Advanced Counting: Generating Functions and Recurrence Relations
Explores generating functions, recurrence relations, and advanced counting techniques.
Counting with Recurrence Relations: Summary
Explores counting with recurrence relations, linear recurrence relations, generating functions, and counting principles.
Show more
Related publications (26)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.