En mathématiques, une permutation de support fini est dite paire si elle présente un nombre pair d'inversions, impaire sinon. La signature d'une permutation vaut 1 si celle-ci est paire, –1 si elle est impaire. L'application signature, du groupe symétrique dans le groupe ({–1, 1}, ×), est un morphisme, c'est-à-dire qu'elle vérifie une propriété analogue à la règle des signes. Toute permutation se décompose en un produit de transpositions. Une transposition étant impaire, il vient de cette règle des signes que la parité du nombre de transpositions d'une telle décomposition coïncide avec la parité de la permutation (et ne dépend donc pas de la décomposition choisie). Tout morphisme de dans un groupe abélien se factorise par le morphisme signature. La signature intervient notamment en algèbre linéaire, dans la formule de Leibniz qui est une façon de définir le déterminant d'une matrice carrée. Nous définissons dans cet article la parité d'une permutation par le comptage de ses . Définition Soient i < j deux entiers compris entre 1 et n. On dit que la paire {i, j} est en inversion pour σ si σ(i) > σ(j). Une permutation est dite paire si elle présente un nombre pair d'inversions, impaire sinon. La signature d'une permutation paire est 1 ; celle d'une permutation impaire est –1. Autrement dit, la signature d'une permutation σ, notée dans la suite de cet article ε(σ), vérifie si l'on note sgn la fonction signe : Exemples Considérons la permutationqui fixe 1 et 4 et envoie 2 sur 3, 3 sur 5 et 5 sur 2.Compter le nombre d'inversions revient à compter le nombre de désordres dans la seconde ligne. On en dénombre quatre : 3 est avant 2, 5 avant 4, 5 avant 2, et 4 avant 2. Cela signifie que les paires formées de leurs antécédents sont, selon la définition, des inversions, soit les paires {2,5}, {3,4}, {3,5}, {4,5}.Puisqu'il y en a quatre, σ est paire et ε(σ) = 1. Considérons le k-cyclequi envoie 1 sur 2, 2 sur 3, ... , k – 1 sur k, k sur 1 et qui fixe tous les autres entiers.Ses paires en inversion sont {i, k}, pour i < k.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-310: Algebra
This is an introduction to modern algebra: groups, rings and fields.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Afficher plus
Séances de cours associées (62)
Permutations et contiguïté
Explore les permutations en préservant la contiguïté, les transformations linéaires, les groupes et les sous-groupes.
Probabilité et statistiques
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Courbes algébriques : Normalisation
Couvre le processus de normalisation des courbes algébriques planes, en se concentrant sur les polynômes irréductibles et les courbes affines.
Afficher plus
Publications associées (32)
Concepts associés (8)
Groupe de Coxeter
Un groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .
Permutation circulaire
En mathématiques, une permutation circulaire ou cycle est un cas particulier de permutation. Une permutation circulaire agit comme un décalage circulaire pour un certain nombre d'éléments, et laisse tous les autres inchangés. Les permutations circulaires permettent d'illustrer le fonctionnement général des permutations, puisqu'une permutation quelconque se décompose en un produit de cycles fonctionnant de manière indépendante. Soit un entier k ≥ 2. Une permutation est un k-cycle, ou permutation circulaire de longueur k, s'il existe des éléments a1, .
Permutation
En mathématiques, la notion de permutation exprime l'idée de réarrangement d'objets discernables. Une permutation d'objets distincts rangés dans un certain ordre correspond à un changement de l'ordre de succession de ces objets. La permutation est une des notions fondamentales en combinatoire, c'est-à-dire pour des problèmes de dénombrement et de probabilités discrètes. Elle sert ainsi à définir et à étudier le carré magique, le carré latin, le sudoku, ou le Rubik's Cube.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.