Concept

Ramification group

In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension. In mathematics, the ramification theory of valuations studies the set of extensions of a valuation v of a field K to an extension L of K. It is a generalization of the ramification theory of Dedekind domains. The structure of the set of extensions is known better when L/K is Galois. Let (K, v) be a valued field and let L be a finite Galois extension of K. Let Sv be the set of equivalence classes of extensions of v to L and let G be the Galois group of L over K. Then G acts on Sv by σ[w] = [w ∘ σ] (i.e. w is a representative of the equivalence class [w] ∈ Sv and [w] is sent to the equivalence class of the composition of w with the automorphism σ : L → L; this is independent of the choice of w in [w]). In fact, this action is transitive. Given a fixed extension w of v to L, the decomposition group of w is the stabilizer subgroup Gw of [w], i.e. it is the subgroup of G consisting of all elements that fix the equivalence class [w] ∈ Sv. Let mw denote the maximal ideal of w inside the valuation ring Rw of w. The inertia group of w is the subgroup Iw of Gw consisting of elements σ such that σx ≡ x (mod mw) for all x in Rw. In other words, Iw consists of the elements of the decomposition group that act trivially on the residue field of w. It is a normal subgroup of Gw. The reduced ramification index e(w/v) is independent of w and is denoted e(v). Similarly, the relative degree f(w/v) is also independent of w and is denoted f(v). Ramification groups are a refinement of the Galois group of a finite Galois extension of local fields. We shall write for the valuation, the ring of integers and its maximal ideal for . As a consequence of Hensel's lemma, one can write for some where is the ring of integers of . (This is stronger than the primitive element theorem.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.