**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Computational Aspects of Jacobians of Hyperelliptic Curves

Abstract

Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest of which remains the Pollard rho algorithm with $r$-adding walks. For the first time, we rigorously analyze the Pollard rho method with $r$-adding walks and prove a complexity bound that differs from the birthday bound observed in practice by a relatively small factor. There exist a multitude of open questions in genus $2$ cryptography. In this case, the DLP is defined in large prime order subgroups of rational points that are situated on the Jacobian of a genus~$2$ curve defined over a large characteristic finite field. We focus on one main topic, namely we present a new efficient algorithm for computing cyclic isogenies between Jacobians. Comparing to previous work that computes non cyclic isogenies in genus~$2$, we need to restrict to certain cases of polarized abelian varieties with specific complex multiplication and real multiplication. The algorithm has multiple applications related to the structure of the isogeny graph in genus~$2$, including random self-reducibility of DLP. It helps support the widespread intuition of choosing \emph{any} curve in a class of curves that satisfy certain public and well studied security parameters. Another topic of interest is generating hyperelliptic curves for cryptographic applications via the CM method that is based on the numerical estimation of the rational Igusa class polynomials. A recent development relates the denominators of the Igusa class polynomials to counting ideal classes in non maximal real quadratic orders whose norm is not prime to the conductor. Besides counting, our new algorithm provides precise representations of such ideal classes for all real quadratic fields and is part of an implementation in Magma of the recent theoretic work in the literature on the topic of denominators.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (30)

Discrete logarithm

In mathematics, for given real numbers a and b, the logarithm logb a is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all i

Quadratic field

In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf{Q}, the rational numbers.
Every such quadratic field is some \mathbf{Q}(\sqrt

Counting

Counting is the process of determining the number of elements of a finite set of objects; that is, determining the size of a set. The traditional way of counting consists of continually increasing a (

Related publications (15)

Loading

Loading

Loading

Benjamin Pierre Charles Wesolowski

We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varieties, and the geometry of ideals in cyclotomic rings.
The presumed difficulty of computing discrete logarithms in certain groups is essential for the security of a number of communication protocols deployed today. One of the most classic choices for the underlying group is the multiplicative group of a finite field. Yet this choice is showing its age, and particularly when the characteristic of the field is small: recent algorithms allow to compute logarithms efficiently in these groups. However, these methods are only heuristic: they seem to always work, yet we do not know how to prove it. In the first part, we propose to study these methods in the hope to get a better understanding, notably by revealing the geometric structures at play.
A more modern choice is the group of rational points of an elliptic curve defined over a finite field. There, the difficulty of the discrete logarithm problem seems at its peak. More generally, the group of rational points of an abelian variety (notably the Jacobian of a curve of small genus) could be appropriate. One of the main tools for studying discrete logarithms on such objects is the notion of isogeny: a morphism from a variety to another one, which allows, among other things, to transfer the computation of a logarithm. Whereas the theory for elliptic curves is already mature, little is known about the structures formed by these isogenies (the isogeny graphs) for varieties of higher dimension. In the second part, we study the structure of isogeny graphs of absolutely simple, ordinary abelian varieties, with a few consequences regarding discrete logarithms on Jacobians of hyperelliptic curves of genus 2, the main object of concern of so-called hyperelliptic cryptography.
The security of quite a few protocols, notably those relying on discrete logarithms, would collapse in front of an adversary equipped with a large-scale quantum computer. This perspective motivates cryptographers to study problems that would resist this technological feat. One of the major directions is cryptography based on Euclidean lattices, relying on the difficulty to find short vectors in a given lattice. For efficiency, one benefits from considering lattices endowed with more structure, such as the ideals of a cyclotomic field. In the third part, we study the geometry of these ideals, and show that a quantum computer allows to efficiently find much shorter vectors in these ideals than is currently possible in generic lattices.

The RSA cryptosystem introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman is the most commonly deployed public-key cryptosystem. Elliptic curve cryptography (ECC) introduced in the mid 80's by Neal Koblitz and Victor Miller is becoming an increasingly popular alternative to RSA offering competitive performance due the use of smaller key sizes. Most recently hyperelliptic curve cryptography (HECC) has been demonstrated to have comparable and in some cases better performance than ECC. The security of RSA relies on the integer factorization problem whereas the security of (H)ECC is based on the (hyper)elliptic curve discrete logarithm problem ((H)ECDLP). In this thesis the practical performance of the best methods to solve these problems is analyzed and a method to generate secure ephemeral ECC parameters is presented. The best publicly known algorithm to solve the integer factorization problem is the number field sieve (NFS). Its most time consuming step is the relation collection step. We investigate the use of graphics processing units (GPUs) as accelerators for this step. In this context, methods to efficiently implement modular arithmetic and several factoring algorithms on GPUs are presented and their performance is analyzed in practice. In conclusion, it is shown that integrating state-of-the-art NFS software packages with our GPU software can lead to a speed-up of 50%. In the case of elliptic and hyperelliptic curves for cryptographic use, the best published method to solve the (H)ECDLP is the Pollard rho algorithm. This method can be made faster using classes of equivalence induced by curve automorphisms like the negation map. We present a practical analysis of their use to speed up Pollard rho for elliptic curves and genus 2 hyperelliptic curves defined over prime fields. As a case study, 4 curves at the 128-bit theoretical security level are analyzed in our software framework for Pollard rho to estimate their practical security level. In addition, we present a novel many-core architecture to solve the ECDLP using the Pollard rho algorithm with the negation map on FPGAs. This architecture is used to estimate the cost of solving the Certicom ECCp-131 challenge with a cluster of FPGAs. Our design achieves a speed-up factor of about 4 compared to the state-of-the-art. Finally, we present an efficient method to generate unique, secure and unpredictable ephemeral ECC parameters to be shared by a pair of authenticated users for a single communication. It provides an alternative to the customary use of fixed ECC parameters obtained from publicly available standards designed by untrusted third parties. The effectiveness of our method is demonstrated with a portable implementation for regular PCs and Android smartphones. On a Samsung Galaxy S4 smartphone our implementation generates unique 128-bit secure ECC parameters in 50 milliseconds on average.

Ernest Hunter Brooks, Dimitar Petkov Jetchev, Benjamin Pierre Charles Wesolowski

Fix a prime number l. Graphs of isogenies of degree a power of l are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse graphs of so-called l-isogenies, resolving that, in arbitrary dimension, their structure is similar, but not identical, to the "volcanoes" occurring as graphs of isogenies of elliptic curves. Specializing to the case of principally polarizable abelian surfaces, we then exploit this structure to describe graphs of a particular class of isogenies known as (l, l)-isogenies: those whose kernels are maximal isotropic subgroups of the l-torsion for the Weil pairing. We use these two results to write an algorithm giving a path of computable isogenies from an arbitrary absolutely simple ordinary abelian surface towards one with maximal endomorphism ring, which has immediate consequences for the CM-method in genus 2, for computing explicit isogenies, and for the random self-reducibility of the discrete logarithm problem in genus 2 cryptography.