Summary
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or of a function. A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the of f. The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements y in its codomain for which the equation f(x) = y does not have a solution. A codomain is not part of a function f if f is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition functions do not have a codomain, although some authors still use it informally after introducing a function in the form f: X → Y. For a function defined by or equivalently the codomain of f is , but f does not map to any negative number. Thus the image of f is the set ; i.e., the interval . An alternative function g is defined thus: While f and g map a given x to the same number, they are not, in this view, the same function because they have different codomains. A third function h can be defined to demonstrate why: The domain of h cannot be but can be defined to be : The compositions are denoted On inspection, h ∘ f is not useful. It is true, unless defined otherwise, that the image of f is not known; it is only known that it is a subset of . For this reason, it is possible that h, when composed with f, might receive an argument for which no output is defined – negative numbers are not elements of the domain of h, which is the square root function.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.