In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or of a function. A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the of f. The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements y in its codomain for which the equation f(x) = y does not have a solution. A codomain is not part of a function f if f is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition functions do not have a codomain, although some authors still use it informally after introducing a function in the form f: X → Y. For a function defined by or equivalently the codomain of f is , but f does not map to any negative number. Thus the image of f is the set ; i.e., the interval . An alternative function g is defined thus: While f and g map a given x to the same number, they are not, in this view, the same function because they have different codomains. A third function h can be defined to demonstrate why: The domain of h cannot be but can be defined to be : The compositions are denoted On inspection, h ∘ f is not useful. It is true, unless defined otherwise, that the image of f is not known; it is only known that it is a subset of . For this reason, it is possible that h, when composed with f, might receive an argument for which no output is defined – negative numbers are not elements of the domain of h, which is the square root function.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.