In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or of a function.
A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the of f. The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements y in its codomain for which the equation f(x) = y does not have a solution.
A codomain is not part of a function f if f is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition functions do not have a codomain, although some authors still use it informally after introducing a function in the form f: X → Y.
For a function
defined by
or equivalently
the codomain of f is , but f does not map to any negative number.
Thus the image of f is the set ; i.e., the interval .
An alternative function g is defined thus:
While f and g map a given x to the same number, they are not, in this view, the same function because they have different codomains. A third function h can be defined to demonstrate why:
The domain of h cannot be but can be defined to be :
The compositions are denoted
On inspection, h ∘ f is not useful. It is true, unless defined otherwise, that the image of f is not known; it is only known that it is a subset of . For this reason, it is possible that h, when composed with f, might receive an argument for which no output is defined – negative numbers are not elements of the domain of h, which is the square root function.