In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper.
The term map may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In , a map may refer to a morphism. The term transformation can be used interchangeably, but transformation often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory.
Function (mathematics)
In many branches of mathematics, the term map is used to mean a function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a "continuous function" in topology, a "linear transformation" in linear algebra, etc.
Some authors, such as Serge Lang, use "function" only to refer to maps in which the codomain is a set of numbers (i.e. a subset of R or C), and reserve the term mapping for more general functions.
Maps of certain kinds are the subjects of many important theories. These include homomorphisms in abstract algebra, isometries in geometry, operators in analysis and representations in group theory.
In the theory of dynamical systems, a map denotes an evolution function used to create discrete dynamical systems.
A partial map is a partial function. Related terms such as domain, codomain, injective, and continuous can be applied equally to maps and functions, with the same meaning. All these usages can be applied to "maps" as general functions or as functions with special properties.
Morphism
In category theory, "map" is often used as a synonym for "morphism" or "arrow", which is a structure-respecting function and thus may imply more structure than "function" does. For example, a morphism in a (i.e. a morphism that can be viewed as a function) carries with it the information of its domain (the source of the morphism) and its codomain (the target ).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, particularly in , a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...
OXFORD UNIV PRESS2022
, ,
Porous molecular crystals are an emerging class of porous materials formed by crystallisation of molecules with weak intermolecular interactions, which distinguishes them from extended nanoporous materials like metal–organic frameworks (MOFs). To aid disco ...
Morphing commonly refers to the smooth transition from a specific shape into another one, in which the initial and final shapes can be significantly different. In this study, we show that the concept of morphing applied to laser micro-manufacturing offers ...