In geometry, a set of points are said to be concyclic (or cocyclic) if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.
Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined circumcircle. However, four or more points in the plane are not necessarily concyclic. After triangles, the special case of cyclic quadrilaterals has been most extensively studied.
In general the centre O of a circle on which points P and Q lie must be such that OP and OQ are equal distances. Therefore O must lie on the perpendicular bisector of the line segment PQ. For n distinct points there are n(n − 1)/2 bisectors, and the concyclic condition is that they all meet in a single point, the centre O.
Circumcircle
The vertices of every triangle fall on a circle called the circumcircle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) Several other sets of points defined from a triangle are also concyclic, with different circles; see Nine-point circle and Lester's theorem.
The radius of the circle on which lie a set of points is, by definition, the radius of the circumcircle of any triangle with vertices at any three of those points. If the pairwise distances among three of the points are a, b, and c, then the circle's radius is
The equation of the circumcircle of a triangle, and expressions for the radius and the coordinates of the circle's center, in terms of the Cartesian coordinates of the vertices are given here and here.
In any triangle all of the following nine points are concyclic on what is called the nine-point circle: the midpoints of the three edges, the feet of the three altitudes, and the points halfway between the orthocenter and each of the three vertices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n-sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case n = 4, a cyclic quadrilateral.
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.
In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row". In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line".
In the present thesis, we delve into different extremal and algebraic problems arising from combinatorial geometry. Specifically, we consider the following problems. For any integer n≥3, we define e(n) to be the minimum positive integer such that an ...
An ordinary circle of a set P of n points in the plane is defined as a circle that contains exactly three points of P. We show that if P is not contained in a line or a circle, then P spans at least ordinary circles. Moreover, we determine the exact minimu ...
In 1977 L.T. Ramsey showed that any sequence in Z 2 with bounded gaps contains arbitrarily many collinear points. Thereafter, in 1980, C. Pomerance provided a density version of this result, relaxing the condition on the sequence from having bounded gaps t ...