In algebra, a field k is perfect if any one of the following equivalent conditions holds: Every irreducible polynomial over k has distinct roots. Every irreducible polynomial over k is separable. Every finite extension of k is separable. Every algebraic extension of k is separable. Either k has characteristic 0, or, when k has characteristic p > 0, every element of k is a pth power. Either k has characteristic 0, or, when k has characteristic p > 0, the Frobenius endomorphism x ↦ x^p is an automorphism of k. The separable closure of k is algebraically closed. Every reduced commutative k-algebra A is a separable algebra; i.e., is reduced for every field extension F/k. (see below) Otherwise, k is called imperfect. In particular, all fields of characteristic zero and all finite fields are perfect. Perfect fields are significant because Galois theory over these fields becomes simpler, since the general Galois assumption of field extensions being separable is automatically satisfied over these fields (see third condition above). Another important property of perfect fields is that they admit Witt vectors. More generally, a ring of characteristic p (p a prime) is called perfect if the Frobenius endomorphism is an automorphism. (When restricted to integral domains, this is equivalent to the above condition "every element of k is a pth power".) Examples of perfect fields are: every field of characteristic zero, so and every finite extension, and ; every finite field ; every algebraically closed field; the union of a set of perfect fields totally ordered by extension; fields algebraic over a perfect field. Most fields that are encountered in practice are perfect. The imperfect case arises mainly in algebraic geometry in characteristic p > 0. Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field , since the Frobenius sends and therefore it is not surjective. It embeds into the perfect field called its perfection.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-317: Algebra V - Galois theory
Galois theory lies at the interface of Field Theory and Group Theory. It aims to describe the algebraic symmetries of fields. We will focus on Galois theory for finite field extensions and some applic
MATH-215: Algebra III - rings and fields
C'est un cours introductoire dans la théorie d'anneau et de corps.
Related lectures (15)
Cardioid Source: Acoustic Radiation Modeling
Explores the modeling of acoustic radiation with a focus on the cardioid source using COMSOL Multiphysics.
The Density Operator Formalism
Explains the density operator formalism and observables in quantum systems.
Integral Closures: Eisenstein Primes
Covers integral closures, focusing on Eisenstein primes and their properties.
Show more
Related publications (18)

On the Kodaira vanishing theorem for log del Pezzo surfaces in positive characteristic

Emelie Kerstin Arvidsson

We investigate the vanishing of H1(X,OX(−D)) for a big and nef Q-Cartier Z-divisor D on a log del Pezzo pair (X,Δ) over a perfect field of positive characteristic p. ...
2021

Examples of normal, not geometrically normal, projective Gorenstein del Pezzo surfaces with at most Du Val singularities

Ursina Schweizer

While over fields of characteristic at least 5, a normal, projective and Gorenstein del Pezzo surface is geometrically normal, this does not hold for characteristic 2 and 3. There is no characterization of all such non-geometrically normal surfaces, but th ...
EPFL2021
Show more
Related people (1)
Related concepts (10)
Frobenius endomorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic p, an important class which includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general. Let R be a commutative ring with prime characteristic p (an integral domain of positive characteristic always has prime characteristic, for example).
Separable extension
In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial (i.e., its formal derivative is not the zero polynomial, or equivalently it has no repeated roots in any extension field). There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.
Absolute Galois group
In mathematics, the absolute Galois group GK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When K is a perfect field, Ksep is the same as an algebraic closure Kalg of K. This holds e.g. for K of characteristic zero, or K a finite field.) The absolute Galois group of an algebraically closed field is trivial.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.