Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, the influence of temperature and back-gate bias is experimentally investigated on 22 nm FDSOI CMOS process. Cryogenic DC characterization was carried out under various back-gate voltages, V back , from 2.95 K back to 300 K. An abrupt drop-of ...
Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an a ...
Quantum computers are invaluable tools to explore the properties of complex quantum systems. We show that dynamical localization of the quantum sawtooth map, a highly sensitive quantum coherent phenomenon, can be simulated on actual, small-scale quantum pr ...
We propose a scheme for universal quantum computing based on Kramers rare-earth ions. Their nuclear spins in the presence of a Zeeman-split electronic crystal field ground state act as "passive" qubits that store quantum information. The "active" qubits ar ...
This paper presents the characterization and modeling of microwave passive components in TSMC 40-nm bulk CMOS, including metal-oxide-metal (MoM) capacitors, transformers, and resonators, at deep cryogenic temperatures (4.2 K). To extract the parameters of ...
The motivation to search for signatures of superconductivity in Weyl semi-metals and other topological phases lies in their potential for hosting exotic phenomena such as nonzero-momentum pairing or the Majorana fermion, a viable candidate for the ultimate ...
The field of post-quantum cryptography studies cryptographic systems that are secure against an adversary in possession of a quantum computer. In 2017, the National Institute of Standards and Technology (NIST) initiated a process to standardize quantum-res ...
Practical realizations of quantum computers are poised to deliver outstanding computational capabilities far beyond the reach of any classical supercomputer.
While classical systems are reliably implemented using CMOS technology, the fabrication of quantu ...
Imaginary time path-integral (PI) simulations that account for nuclear quantum effects (NQE) beyond the harmonic approximation are increasingly employed together with modern electronic-structure calculations. Existing PI methods are applicable to molecules ...
We present a generally applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in an explicit solvent using H2O2 and CH3SO3H in phenol as an example. To address the challenges ...