Transform coding is a type of data compression for "natural" data like audio signals or photographic s. The transformation is typically lossless (perfectly reversible) on its own but is used to enable better (more targeted) quantization, which then results in a lower quality copy of the original input (lossy compression).
In transform coding, knowledge of the application is used to choose information to discard, thereby lowering its bandwidth. The remaining information can then be compressed via a variety of methods. When the output is decoded, the result may not be identical to the original input, but is expected to be close enough for the purpose of the application.
One of the most successful transform encoding system is typically not referred to as such—the example being NTSC color television. After an extensive series of studies in the 1950s, Alda Bedford showed that the human eye has high resolution only for black and white, somewhat less for "mid-range" colors like yellows and greens, and much less for colors on the end of the spectrum, reds and blues.
Using this knowledge allowed RCA to develop a system in which they discarded most of the blue signal after it comes from the camera, keeping most of the green and only some of the red; this is chroma subsampling in the YIQ color space.
The result is a signal with considerably less content, one that would fit within existing 6 MHz black-and-white signals as a phase modulated differential signal. The average TV displays the equivalent of 350 pixels on a line, but the TV signal contains enough information for only about 50 pixels of blue and perhaps 150 of red. This is not apparent to the viewer in most cases, as the eye makes little use of the "missing" information anyway.
The PAL and SECAM systems use nearly identical or very similar methods to transmit colour. In any case both systems are subsampled.
The term is much more commonly used in digital media and digital signal processing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
D'une part, le cours aborde: (1) la notion d'algorithme et de représentation de l'information, (2) l'échantillonnage d'un signal et la compression de données et (3) des aspects
liés aux systèmes: ordi
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. The DCT, first proposed by Nasir Ahmed in 1972, is a widely used transformation technique in signal processing and data compression. It is used in most digital media, including (such as JPEG and HEIF), digital video (such as MPEG and H.26x), digital audio (such as Dolby Digital, MP3 and AAC), digital television (such as SDTV, HDTV and VOD), digital radio (such as AAC+ and DAB+), and speech coding (such as AAC-LD, Siren and Opus).
A video coding format (or sometimes video compression format) is a content representation format for storage or transmission of digital video content (such as in a data file or bitstream). It typically uses a standardized video compression algorithm, most commonly based on discrete cosine transform (DCT) coding and motion compensation. A specific software, firmware, or hardware implementation capable of compression or decompression to/from a specific video coding format is called a video codec.
Vector quantization (VQ) is a classical quantization technique from signal processing that allows the modeling of probability density functions by the distribution of prototype vectors. It was originally used for data compression. It works by dividing a large set of points (vectors) into groups having approximately the same number of points closest to them. Each group is represented by its centroid point, as in k-means and some other clustering algorithms.
We consider rank-1 lattices for integration and reconstruction of functions with series expansion supported on a finite index set. We explore the connection between the periodic Fourier space and the non-periodic cosine space and Chebyshev space, via tent ...
2021
,
In this paper, we propose a new graph-based transform and illustrate its potential application to signal compression. Our approach relies on the careful design of a graph that optimizes the overall rate-distortion performance through an effective graph-bas ...
JPEG XL is a practical, royalty-free codec for scalable web distribution and efficient compression of high-quality photographs. It also includes previews, progressiveness, animation, transparency, high dynamic range, wide color gamut, and high bit depth. U ...