Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula SO2. It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic activity and is produced as a by-product of copper extraction and the burning of sulfur-bearing fossil fuels. SO2 is a bent molecule with C2v symmetry point group. A valence bond theory approach considering just s and p orbitals would describe the bonding in terms of resonance between two resonance structures. The sulfur–oxygen bond has a bond order of 1.5. There is support for this simple approach that does not invoke d orbital participation. In terms of electron-counting formalism, the sulfur atom has an oxidation state of +4 and a formal charge of +1. Sulfur dioxide is found on Earth and exists in very small concentrations in the atmosphere at about 15 ppb. On other planets, sulfur dioxide can be found in various concentrations, the most significant being the atmosphere of Venus, where it is the third-most abundant atmospheric gas at 150 ppm. There, it reacts with water to form clouds of sulfuric acid, and is a key component of the planet's global atmospheric sulfur cycle and contributes to global warming. It has been implicated as a key agent in the warming of early Mars, with estimates of concentrations in the lower atmosphere as high as 100 ppm, though it only exists in trace amounts. On both Venus and Mars, as on Earth, its primary source is thought to be volcanic. The atmosphere of Io, a natural satellite of Jupiter, is 90% sulfur dioxide and trace amounts are thought to also exist in the atmosphere of Jupiter. The James Webb Space Telescope has observed the presence of sulfur dioxide on the exoplanet WASP-39b, where it is formed through photochemistry in the planet's atmosphere. As an ice, it is thought to exist in abundance on the Galilean moons—as subliming ice or frost on the trailing hemisphere of Io, and in the crust and mantle of Europa, Ganymede, and Callisto, possibly also in liquid form and readily reacting with water.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
BIO-378: Physiology lab I
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données. Le
BIO-379: Physiology lab II
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données. Le
Show more
Related lectures (37)
Chemistry of Sulfur and Halogens
Explores the chemistry of sulfur and halogens, discussing properties, compounds, and applications of elements like sulfur, fluorine, and chlorine.
Sulfur Cycle: Microbial Processes and Energy Conservation
Explores microbial processes in the sulfur cycle and energy conservation mechanisms.
Sulfur and Nitrogen Cycles
Explores the environmental significance of sulfur and nitrogen cycles, including key microbial processes and organisms involved.
Show more
Related publications (158)

Acyl-Ethynylbenziodoxolone (acyl-EBX): Access to Ketene Dithioarylacetals

Jérôme Waser, Pierre Gérard Joseph Palamini, Morgane Elodie Marie Delattre, Julien Aymeric Borrel, Maël Djaïd

We report the synthesis of ketene dithioarylacetals in 40–97% yield using thiophenols and acyl-EBXs (ethynylbenziodoxolones) generated in situ from a common hypervalent iodine precursor and alkynyl trifluoroborate salts. The products could be further modif ...
2023

Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere

Andrea Baccarini, Imad El Haddad, Mihnea Surdu, Lubna Dada, André Welti, Houssni Lamkaddam

The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3 is generally low, and H2SO4 is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid ...
2023

Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors

Anna Fontcuberta i Morral, Elias Zsolt Stutz, Andrea Giunto, Santhanu Panikar Ramanandan, Mirjana Dimitrievska, Iléane Tiphaine Françoise Marie Lefevre

Barium zirconium sulfide (BaZrS3) is an earth-abundant and environmentally friendly chalcogenide perovskite with promising properties for various energy conversion applications. Recently, sulfurization of oxide precursors has been suggested as a viable sol ...
IOP Publishing Ltd2023
Show more
Related concepts (27)
Redox
Redox (ˈrɛdɒks , ˈriːdɒks , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. There are two classes of redox reactions: Electron-transfer – Only one (usually) electron flows from the atom being oxidized to the atom that is reduced. This type of redox reaction is often discussed in terms of redox couples and electrode potentials.
Sulfuric acid
Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, and hydrogen, with the molecular formula . It is a colorless, odorless, and viscous liquid that is miscible with water. Pure sulfuric acid does not occur naturally due to its strong affinity to water vapor; it is hygroscopic and readily absorbs water vapor from the air.
Hydrogen sulfide
Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The underground mine gas term for foul-smelling hydrogen sulfide-rich gas mixtures is stinkdamp. Swedish chemist Carl Wilhelm Scheele is credited with having discovered the chemical composition of purified hydrogen sulfide in 1777.
Show more
Related MOOCs (2)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.