In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory. In the nineteenth century number systems called quaternions, tessarines, coquaternions, biquaternions, and octonions became established concepts in mathematical literature, added to the real and complex numbers. The concept of a hypercomplex number covered them all, and called for a discipline to explain and classify them. The cataloguing project began in 1872 when Benjamin Peirce first published his Linear Associative Algebra, and was carried forward by his son Charles Sanders Peirce. Most significantly, they identified the nilpotent and the idempotent elements as useful hypercomplex numbers for classifications. The Cayley–Dickson construction used involutions to generate complex numbers, quaternions, and octonions out of the real number system. Hurwitz and Frobenius proved theorems that put limits on hypercomplexity: Hurwitz's theorem says finite-dimensional real composition algebras are the reals , the complexes , the quaternions , and the octonions , and the Frobenius theorem says the only real associative division algebras are , , and . In 1958 J. Frank Adams published a further generalization in terms of Hopf invariants on H-spaces which still limits the dimension to 1, 2, 4, or 8. It was matrix algebra that harnessed the hypercomplex systems. First, matrices contributed new hypercomplex numbers like 2 × 2 real matrices (see Split-quaternion). Soon the matrix paradigm began to explain the others as they became represented by matrices and their operations. In 1907 Joseph Wedderburn showed that associative hypercomplex systems could be represented by square matrices, or direct product of algebras of square matrices. From that date the preferred term for a hypercomplex system became associative algebra as seen in the title of Wedderburn's thesis at University of Edinburgh.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Related lectures (4)
AI4Science at Microsoft: Catalyst Design & Material Discovery
Explores AI4Science at Microsoft, focusing on catalyst design, reaction mechanisms, and material discovery using Clifford algebra.
Matrix Operations: Row Echelon Form
Covers the process of row echelon form by performing various operations on matrices.
Show more
Related publications (1)

Small-angle scattering tensor tomography algorithm for robust reconstruction of complex textures

Marianne Liebi, Manuel Guizar Sicairos

The development of small-angle scattering tensor tomography has enabled the study of anisotropic nanostructures in a volume-resolved manner. It is of great value to have reconstruction methods that can handle many different nanostructural symmetries. For s ...
Chester2023
Related concepts (20)
Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative. Quaternions are generally represented in the form where a, b, c, and d are real numbers; and 1, i, j, and k are the basis vectors or basis elements.
Abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
Biquaternion
In abstract algebra, the biquaternions are the numbers w + x i + y j + z k, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof: Biquaternions when the coefficients are complex numbers. Split-biquaternions when the coefficients are split-complex numbers. Dual quaternions when the coefficients are dual numbers.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.