In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers.
The study of hypercomplex numbers in the late 19th century forms the basis of modern group representation theory.
In the nineteenth century number systems called quaternions, tessarines, coquaternions, biquaternions, and octonions became established concepts in mathematical literature, added to the real and complex numbers. The concept of a hypercomplex number covered them all, and called for a discipline to explain and classify them.
The cataloguing project began in 1872 when Benjamin Peirce first published his Linear Associative Algebra, and was carried forward by his son Charles Sanders Peirce. Most significantly, they identified the nilpotent and the idempotent elements as useful hypercomplex numbers for classifications. The Cayley–Dickson construction used involutions to generate complex numbers, quaternions, and octonions out of the real number system. Hurwitz and Frobenius proved theorems that put limits on hypercomplexity: Hurwitz's theorem says finite-dimensional real composition algebras are the reals , the complexes , the quaternions , and the octonions , and the Frobenius theorem says the only real associative division algebras are , , and . In 1958 J. Frank Adams published a further generalization in terms of Hopf invariants on H-spaces which still limits the dimension to 1, 2, 4, or 8.
It was matrix algebra that harnessed the hypercomplex systems. First, matrices contributed new hypercomplex numbers like 2 × 2 real matrices (see Split-quaternion). Soon the matrix paradigm began to explain the others as they became represented by matrices and their operations. In 1907 Joseph Wedderburn showed that associative hypercomplex systems could be represented by square matrices, or direct product of algebras of square matrices. From that date the preferred term for a hypercomplex system became associative algebra as seen in the title of Wedderburn's thesis at University of Edinburgh.