**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Eigenvalue algorithm

Summary

In numerical analysis, one of the most important problems is designing efficient and stable algorithms for finding the eigenvalues of a matrix. These eigenvalue algorithms may also find eigenvectors.
Eigenvalues and eigenvectors and Generalized eigenvector
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation
where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real. When k = 1, the vector is called simply an eigenvector, and the pair is called an eigenpair. In this case, Av = λv. Any eigenvalue λ of A has ordinary eigenvectors associated to it, for if k is the smallest integer such that (A − λI)k v = 0 for a generalized eigenvector v, then (A − λI)k−1 v is an ordinary eigenvector. The value k can always be taken as less than or equal to n. In particular, (A − λI)n v = 0 for all generalized eigenvectors v associated with λ.
For each eigenvalue λ of A, the kernel ker(A − λI) consists of all eigenvectors associated with λ (along with 0), called the eigenspace of λ, while the vector space ker((A − λI)n) consists of all generalized eigenvectors, and is called the generalized eigenspace. The geometric multiplicity of λ is the dimension of its eigenspace. The algebraic multiplicity of λ is the dimension of its generalized eigenspace. The latter terminology is justified by the equation
where det is the determinant function, the λi are all the distinct eigenvalues of A and the αi are the corresponding algebraic multiplicities. The function pA(z) is the characteristic polynomial of A. So the algebraic multiplicity is the multiplicity of the eigenvalue as a zero of the characteristic polynomial. Since any eigenvector is also a generalized eigenvector, the geometric multiplicity is less than or equal to the algebraic multiplicity. The algebraic multiplicities sum up to n, the degree of the characteristic polynomial.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (2)

Related publications (3)

Related concepts (17)

Related courses (55)

MATH-456: Numerical analysis and computational mathematics

The course provides an introduction to scientific computing. Several numerical methods are presented for the computer solution of mathematical problems arising in different applications. The software

MATH-453: Computational linear algebra

This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability t

MATH-111(e): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

Power iteration

In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix , the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, . The algorithm is also known as the Von Mises iteration. Power iteration is a very simple algorithm, but it may converge slowly.

Eigenvalue algorithm

In numerical analysis, one of the most important problems is designing efficient and stable algorithms for finding the eigenvalues of a matrix. These eigenvalue algorithms may also find eigenvectors. Eigenvalues and eigenvectors and Generalized eigenvector Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.

Eigenvalues and eigenvectors

In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.

Related lectures (666)

Nonlocal Games

Explores nonlocal games using quantum mechanics to achieve unexplainable correlations.

Quantum Mechanics: State SystemsCH-244: Quantum chemistry

Covers the fundamentals of quantum mechanics, focusing on state systems and observable measurements.

Fermion Masses and Mixings

Explores fermion masses, chiral nature, and Yukawa couplings.

Structured eigenvalue problems feature a prominent role in many algorithms for the computation of robust measures for the stability or controllability of a linear control system. Structures that typic

This work considers eigenvalue problems that are nonlinear in the eigenvalue parameter. Given such a nonlinear eigenvalue problem T, we are concerned with finding the minimal backward error such that

Solar energy has seen tremendous advances in the past years. For thin film photovoltaics, which use less of the expensive semiconductor materials, insufficient light absorption can be a limiting facto