Résumé
Un problème important en analyse numérique consiste à développer des algorithmes efficaces et stables pour trouver les valeurs propres d'une matrice. Ces algorithmes de recherche de valeurs propres peuvent être étendus pour donner les vecteurs propres associés. Valeur propre, vecteur propre et espace propre Pour une matrice carrée A de taille n × n réelle ou complexe, une valeur propre λ et son vecteur propre généralisé associé v sont un couple vérifiant la relation où v est un vecteur colonne n × 1 non nul, I la matrice identité de taille n × n, k un entier positif. λ et v peuvent être complexes même pour A réelle. Si k = 1, le vecteur est simplement appelé vecteur propre et vérifie donc Av = λv. Toute valeur propre λ de A a des vecteurs propres « ordinaires » qui lui sont associés, dans le sens où si k est le plus petit entier vérifiant (A – λI)k v = 0 pour un vecteur propre généralisé v, alors (A – λI)k–1 v est un vecteur propre ordinaire. La valeur k peut toujours être prise comme inférieure ou égale à n. En particulier, (A – λI)n v = 0 pour tout vecteur propre généralisé v associé à λ. Pour toute valeur propre λ de A, le noyau ker(A – λI) est le sous-espace vectoriel engendré par tous les vecteurs propres associés à λ (dont le vecteur nul), qu'on appelle espace propre de λ, tandis que l'espace vectoriel ker((A – λI)n) est le sous-espace vectoriel engendré par tous les vecteurs propres généralisés associés, et donc appelé espace propre généralisé. La multiplicité géométrique de λ est la dimension de ce sous-espace. La multiplicité algébrique de λ est la dimension de son espace propre généralisé. Cette terminologie se justifie en remarquant que où det est le déterminant, les λi sont les valeurs propres de Aet les αi sont les multiplicités algébriques associées. La fonction pA(z) est le polynôme caractéristique de A. Ainsi, la multiplicité algébrique est la multiplicité de la valeur propre comme racine du polynôme caractéristique. Comme tout vecteur propre est un vecteur propre généralisé, la multiplicité géométrique est inférieure ou égale à la multiplicité algébrique.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-456: Numerical analysis and computational mathematics
The course provides an introduction to scientific computing. Several numerical methods are presented for the computer solution of mathematical problems arising in different applications. The software
MATH-453: Computational linear algebra
This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability t
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Afficher plus