Concept

Semi-locally simply connected

Summary
In mathematics, specifically algebraic topology, semi-locally simply connected is a certain local connectedness condition that arises in the theory of covering spaces. Roughly speaking, a topological space X is semi-locally simply connected if there is a lower bound on the sizes of the “holes” in X. This condition is necessary for most of the theory of covering spaces, including the existence of a universal cover and the Galois correspondence between covering spaces and subgroups of the fundamental group. Most “nice” spaces such as manifolds and CW complexes are semi-locally simply connected, and topological spaces that do not satisfy this condition are considered somewhat pathological. The standard example of a non-semi-locally simply connected space is the Hawaiian earring. A space X is called semi-locally simply connected if every point in X has a neighborhood U with the property that every loop in U can be contracted to a single point within X (i.e. every loop in U is nullhomotopic in X). The neighborhood U need not be simply connected: though every loop in U must be contractible within X, the contraction is not required to take place inside of U. For this reason, a space can be semi-locally simply connected without being locally simply connected. Equivalent to this definition, a space X is semi-locally simply connected if every point in X has a neighborhood U for which the homomorphism from the fundamental group of U to the fundamental group of X, induced by the inclusion map of U into X, is trivial. Most of the main theorems about covering spaces, including the existence of a universal cover and the Galois correspondence, require a space to be path-connected, locally path-connected, and semi-locally simply connected, a condition known as unloopable (délaçable in French). In particular, this condition is necessary for a space to have a simply connected covering space. A simple example of a space that is not semi-locally simply connected is the Hawaiian earring: the union of the circles in the Euclidean plane with centers (1/n, 0) and radii 1/n, for n a natural number.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.