Résumé
In mathematics, specifically algebraic topology, semi-locally simply connected is a certain local connectedness condition that arises in the theory of covering spaces. Roughly speaking, a topological space X is semi-locally simply connected if there is a lower bound on the sizes of the “holes” in X. This condition is necessary for most of the theory of covering spaces, including the existence of a universal cover and the Galois correspondence between covering spaces and subgroups of the fundamental group. Most “nice” spaces such as manifolds and CW complexes are semi-locally simply connected, and topological spaces that do not satisfy this condition are considered somewhat pathological. The standard example of a non-semi-locally simply connected space is the Hawaiian earring. A space X is called semi-locally simply connected if every point in X has a neighborhood U with the property that every loop in U can be contracted to a single point within X (i.e. every loop in U is nullhomotopic in X). The neighborhood U need not be simply connected: though every loop in U must be contractible within X, the contraction is not required to take place inside of U. For this reason, a space can be semi-locally simply connected without being locally simply connected. Equivalent to this definition, a space X is semi-locally simply connected if every point in X has a neighborhood U for which the homomorphism from the fundamental group of U to the fundamental group of X, induced by the inclusion map of U into X, is trivial. Most of the main theorems about covering spaces, including the existence of a universal cover and the Galois correspondence, require a space to be path-connected, locally path-connected, and semi-locally simply connected, a condition known as unloopable (délaçable in French). In particular, this condition is necessary for a space to have a simply connected covering space. A simple example of a space that is not semi-locally simply connected is the Hawaiian earring: the union of the circles in the Euclidean plane with centers (1/n, 0) and radii 1/n, for n a natural number.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (6)
Concepts associés (1)
Revêtement (mathématiques)
En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l' de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. Il s'agit donc d'un fibré à fibres discrètes. Les revêtements jouent un rôle pour calculer le groupe fondamental et les groupes d'homotopie d'un espace.