Summary
In optics, a dichroic material is either one which causes visible light to be split up into distinct beams of different wavelengths (colours) (not to be confused with dispersion), or one in which light rays having different polarizations are absorbed by different amounts. Beam splitter The original meaning of dichroic, from the Greek dikhroos, two-coloured, refers to any optical device which can split a beam of light into two beams with differing wavelengths. Such devices include mirrors and filters, usually treated with optical coatings, which are designed to reflect light over a certain range of wavelengths and transmit light which is outside that range. An example is the dichroic prism, used in some camcorders, which uses several coatings to split light into red, green and blue components for recording on separate CCD arrays, however it is now more common to have a Bayer filter to filter individual pixels on a single CCD array. This kind of dichroic device does not usually depend on the polarization of the light. The term dichromatic is also used in this sense. Linear dichroism and Circular dichroism The second meaning of dichroic refers to the property of a material, in which light in different polarization states traveling through it experiences a different absorption coefficient; this is also known as diattenuation. When the polarization states in question are right and left-handed circular polarization, it is then known as circular dichroism (CD). Most materials exhibiting CD are chiral, although non-chiral materials showing CD have been recently observed. Since the left- and right-handed circular polarizations represent two spin angular momentum (SAM) states, in this case for a photon, this dichroism can also be thought of as spin angular momentum dichroism and could be modelled using quantum mechanics. In some crystals,, such as tourmaline, the strength of the dichroic effect varies strongly with the wavelength of the light, making them appear to have different colours when viewed with light having differing polarizations.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.