Summary
The pars compacta (SNpc) is one of two subdivisions of the substantia nigra of the midbrain (the other being the pars reticulata); it is situated medial to the pars reticulata. It is formed by dopaminergic neurons. It projects to the striatum and portions of the cerebral cortex. It is functionally involved in fine motor control. Parkinson's disease is characterized by the death of dopaminergic neurons in this region. In humans, the nerve cell bodies of the pars compacta are coloured black by the pigment neuromelanin. The degree of pigmentation increases with age. This pigmentation is visible as a distinctive black stripe in brain sections and is the origin of the name given to this volume of the brain. The neurons have particularly long and thick dendrites. The ventral dendrites, particularly, go down deeply in the pars reticulata. Other similar neurons are more sparsely distributed in the midbrain and constitute "groups" with no well-defined borders, although continuous to the pars compacta, in a pre-rubral position. These have been given, in early works in rats (with not much respect for the anatomical subdivisions), the name of "area A8" and "A10". The pars compacta itself ("A9") is usually subdivided into a ventral and a dorsal tier, the last being calbindin positive. The ventral tier is considered as A9v. The dorsal tier A9d is linked to an ensemble comprising also A8 and A10, A8, A9d and A10 representing 28% of dopaminergic neurons. The neurons of the pars compacta receive inhibiting signals from the collateral axons from the neurons of the pars reticulata. The dopaminergic neurons of the pars compacta project many of their axons along the nigrostriatal pathway to the dorsal striatum, where they release the neurotransmitter dopamine. There is an organization in which dopaminergic neurons of the fringes (the lowest) go to the sensorimotor striatum and the highest to the associative striatum. Dopaminergic axons also project to other elements of the basal ganglia, including the lateral and medial pallidum, substantia nigra pars reticulata, and the subthalamic nucleus.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (5)
BIO-499: Neural circuits of motivated behaviors
Motivated behaviors fulfil the basic physiological needs of animals and enable their safety. In this course, you will learn about the neuronal circuits that detect potential dangers in the environment
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
NX-423: Translational neuroengineering
This course integrates knowledge in basic, systems, clinical and computational neuroscience, and engineering with the goal of translating this integrated knowledge into the development of novel method
Show more
Related lectures (32)
Parkinson's Disease: Basal Ganglia Circuitry
Explores the basal ganglia circuitry in Parkinson's disease, covering structure, function, dopamine role, pathology, and treatments.
Neuroscience Techniques: Two-Photon Microscopy
Explores the use of two-photon microscopy in neuroscience research, highlighting its benefits and applications in brain imaging and behavior studies.
Show more
Related publications (89)

Impact of Mitofusin 2 in the Nucleus Accumbens on motivated behavior and underlying neurobiological mechanisms

Alessandro Chioino

The nucleus accumbens (NAc) is part of the ventral striatum and plays a major role in motivation and goal-directed behaviour. Increasing evidence implicates impairments in accumbal function in anxiety and depression, two conditions that are commonly accomp ...
EPFL2024

Distinct ultrastructural phenotypes of glial and neuronal alpha-synuclein inclusions in multiple system atrophy

Henning Paul-Julius Stahlberg, Amanda Jennifer Lewis, Marta Di Fabrizio, Domenic Burger, Carolin Böing

Multiple System Atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and elec ...
2024

Striatal Dopamine Signals and Reward Learning

Carl Petersen, Sylvain Crochet, Yanqi Liu, Parviz Ghaderi, Mauro Pulin, Anthony Pierre Robert Renard, Christos Sourmpis, Pol Bech Vilaseca, Meriam Malekzadeh, Robin François Virginien Dard

We are constantly bombarded by sensory information and constantly making decisions on how to act. In order to optimally adapt behavior, we must judge which sequences of sensory inputs and actions lead to successful outcomes in specific circumstances. Neuro ...
Oxford2023
Show more
Related concepts (11)
Parkinson's disease
Parkinson's disease (PD), or simply Parkinson's, is a chronic degenerative disorder of the central nervous system that affects both the motor system and non-motor systems. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms become more common. Early symptoms are tremor, rigidity, slowness of movement, and difficulty with walking. Problems may also arise with cognition, behaviour, sleep, and sensory systems. Parkinson's disease dementia becomes common in advanced stages of the disease.
Pars reticulata
The pars reticulata (SNpr) is a portion of the substantia nigra and is located lateral to the pars compacta. Most of the neurons that project out of the pars reticulata are inhibitory GABAergic neurons (i.e., these neurons release GABA, which is an inhibitory neurotransmitter). Neurons in the pars reticulata are much less densely packed than those in the pars compacta (they were sometimes named pars diffusa). They are smaller and thinner than the dopaminergic neurons and conversely identical and morphologically similar to the pallidal neurons (see primate basal ganglia).
Pedunculopontine nucleus
The pedunculopontine nucleus (PPN) or pedunculopontine tegmental nucleus (PPT or PPTg) is a collection of neurons located in the upper pons in the brainstem. It lies caudal to the substantia nigra and adjacent to the superior cerebellar peduncle. It has two divisions of subnuclei; the pars compacta containing mainly cholinergic neurons, and the pars dissipata containing mainly glutamatergic neurons and some non-cholinergic neurons. The pedunculopontine nucleus is one of the main components of the reticular activating system.
Show more
Related MOOCs (2)
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.