Laser cutting is a technology that uses a laser to vaporize materials, resulting in a cut edge. While typically used for industrial manufacturing applications, it is now used by schools, small businesses, architecture, and hobbyists. Laser cutting works by directing the output of a high-power laser most commonly through optics. The laser optics and CNC (computer numerical control) are used to direct the laser beam to the material. A commercial laser for cutting materials uses a motion control system to follow a CNC or G-code of the pattern to be cut onto the material. The focused laser beam is directed at the material, which then either melts, burns, vaporizes away, or is blown away by a jet of gas, leaving an edge with a high-quality surface finish.
In 1965, the first production laser cutting machine was used to drill holes in diamond dies. This machine was made by the Western Electric Engineering Research Center. In 1967, the British pioneered laser-assisted oxygen jet cutting for metals. In the early 1970s, this technology was put into production to cut titanium for aerospace applications. At the same time, CO2 lasers were adapted to cut non-metals, such as textiles, because, at the time, CO2 lasers were not powerful enough to overcome the thermal conductivity of metals.
The laser beam is generally focused using a high-quality lens on the work zone. The quality of the beam has a direct impact on the focused spot size. The narrowest part of the focused beam is generally less than in diameter. Depending upon the material thickness, kerf widths as small as are possible. In order to be able to start cutting from somewhere other than the edge, a pierce is done before every cut. Piercing usually involves a high-power pulsed laser beam which slowly makes a hole in the material, taking around 5–15 seconds for stainless steel, for example.
The parallel rays of coherent light from the laser source often fall in the range between in diameter. This beam is normally focused and intensified by a lens or a mirror to a very small spot of about to create a very intense laser beam.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with material being added together (such as plastics, liquids or powder grains being fused), typically layer by layer. In the 1980s, 3D printing techniques were considered suitable only for the production of functional or aesthetic prototypes, and a more appropriate term for it at the time was rapid prototyping.
Numerical control (also computer numerical control, abbreviated CNC) is the automated control of machining tools (such as drills, lathes, mills, grinders, routers and 3D printers) by means of a computer. A CNC machine processes a piece of material (metal, plastic, wood, ceramic, stone, or composite) to meet specifications by following coded programmed instructions and without a manual operator directly controlling the machining operation.
Laser ablation or photoablation (also called laser blasting) is the process of removing material from a solid (or occasionally liquid) surface by irradiating it with a laser beam. At low laser flux, the material is heated by the absorbed laser energy and evaporates or sublimates. At high laser flux, the material is typically converted to a plasma. Usually, laser ablation refers to removing material with a pulsed laser, but it is possible to ablate material with a continuous wave laser beam if the laser intensity is high enough.
The physical principles of laser light materials interactions are introduced with a large number of industrial application examples. Materials processing lasers are developing further and further, the
Provide understanding of the optical properties of materials, principles of laser operation and properties of generated light. Comprehension of basics of interaction between laser light and materials
Repeatability in laser material processing is challenging due to high-speed dynamics. To address this issue, the course provides an overview of laser theory, laser-material interaction, various types
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Over the last decades, the progress made in the generation of laser pulses shorter than a picosecond (10^-12 s) has allowed us to reach extreme optical power intensities exceeding 10^15 W cm^-2. This tremendous power has triggered an abundance of original ...
Ultrashort laser pulses, i.e., pulses emitted shorter than a picosecond, can tailor material properties by introducing permanent modifications locally in three dimensions. Remarkably, under a certain exposure condition, these modifications are accompanied ...
Additive Manufacturing also commonly referred as 3D printing has been given a lot of interest lately. Market is growing exponentially and the aim for obtaining more complex and ready-to use parts is emerging. All the 3D printing processes consist in buildi ...