International Linear ColliderThe International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC.
B mesonIn particle physics, B mesons are mesons composed of a bottom antiquark and either an up (_B+), down (_B0), strange (_Strange B0) or charm quark (_Charmed B+). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark's short lifetime. The combination of a bottom antiquark and a bottom quark is not a B meson, but rather bottomonium, which is something else entirely. Each B meson has an antiparticle that is composed of a bottom quark and an up (_B-), down (_AntiB0), strange (_Strange antiB0) or charm (_Charmed b-) antiquark respectively.
Faster-than-light neutrino anomalyIn 2011, the OPERA experiment mistakenly observed neutrinos appearing to travel faster than light. Even before the source of the error was discovered, the result was considered anomalous because speeds higher than that of light in vacuum are generally thought to violate special relativity, a cornerstone of the modern understanding of physics for over a century. OPERA scientists announced the results of the experiment in September 2011 with the stated intent of promoting further inquiry and debate.
Accelerator physicsAccelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields. It is also related to other fields: Microwave engineering (for acceleration/deflection structures in the radio frequency range). Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction).
Muon g-2Muon g − 2 (pronounced "gee minus two") is a particle physics experiment at Fermilab to measure the anomalous magnetic dipole moment of a muon to a precision of 0.14 ppm, which is a sensitive test of the Standard Model. It might also provide evidence of the existence of new particles. The muon, like its lighter sibling the electron, acts like a tiny magnet. The parameter known as the "g factor" indicates how strong the magnet is and the rate of its gyration in an externally applied magnetic field.
Ultra-high-energy cosmic rayIn astroparticle physics, an ultra-high-energy cosmic ray (UHECR) is a cosmic ray with an energy greater than 1 EeV (1018 electronvolts, approximately 0.16 joules), far beyond both the rest mass and energies typical of other cosmic ray particles. These particles are extremely rare; between 2004 and 2007, the initial runs of the Pierre Auger Observatory (PAO) detected 27 events with estimated arrival energies above 5.7e19eV, that is, about one such event every four weeks in the 3000 km2 area surveyed by the observatory.
Barn (unit)A barn (symbol: b) is a metric unit of area equal to e−28m2 (100 fm2). Originally used in nuclear physics for expressing the cross sectional area of nuclei and nuclear reactions, today it is also used in all fields of high-energy physics to express the cross sections of any scattering process, and is best understood as a measure of the probability of interaction between small particles. A barn is approximately the cross-sectional area of a uranium nucleus.