In physics, a conservative force is a force with the property that the total work done in moving a particle between two points is independent of the path taken. Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement) by a conservative force is zero.
A conservative force depends only on the position of the object. If a force is conservative, it is possible to assign a numerical value for the potential at any point and conversely, when an object moves from one location to another, the force changes the potential energy of the object by an amount that does not depend on the path taken, contributing to the mechanical energy and the overall conservation of energy. If the force is not conservative, then defining a scalar potential is not possible, because taking different paths would lead to conflicting potential differences between the start and end points.
Gravitational force is an example of a conservative force, while frictional force is an example of a non-conservative force.
Other examples of conservative forces are: force in elastic spring, electrostatic force between two electric charges, and magnetic force between two magnetic poles. The last two forces are called central forces as they act along the line joining the centres of two charged/magnetized bodies. A central force is conservative if and only if it is spherically symmetric.
Informally, a conservative force can be thought of as a force that conserves mechanical energy. Suppose a particle starts at point A, and there is a force F acting on it. Then the particle is moved around by other forces, and eventually ends up at A again. Though the particle may still be moving, at that instant when it passes point A again, it has traveled a closed path. If the net work done by F at this point is 0, then F passes the closed path test. Any force that passes the closed path test for all possible closed paths is classified as a conservative force.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if when applied it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of any path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl.
The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line. For φ : U ⊆ Rn → R as a differentiable function and γ as any continuous curve in U which starts at a point p and ends at a point q, then where ∇φ denotes the gradient vector field of φ.
This paper proposes high-order accurate well-balanced (WB) energy stable (ES) adaptive moving mesh finite difference schemes for the shallow water equations (SWEs) with non flat bottom topography. To enable the construction of the ES schemes on moving mesh ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2023
, , ,
Flexure pivot based system (1) being one of: a force sensor, a force limiting device arranged to exert a predetermined threshold force, a torque limiting device arranged to exert a predetermined threshold torque, a programmable mechanical memory, or an acc ...
Soft actuator is the main technology that drives the development of soft robotics as it defines the capabilities of soft machines. One of the key challenges in soft actuator research is to simultaneously produce complex morphing (e.g., surface morphing) an ...