Summary
Proportional hazards models are a class of survival models in statistics. Survival models relate the time that passes, before some event occurs, to one or more covariates that may be associated with that quantity of time. In a proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative with respect to the hazard rate. For example, taking a drug may halve one's hazard rate for a stroke occurring, or, changing the material from which a manufactured component is constructed may double its hazard rate for failure. Other types of survival models such as accelerated failure time models do not exhibit proportional hazards. The accelerated failure time model describes a situation where the biological or mechanical life history of an event is accelerated (or decelerated). Survival models can be viewed as consisting of two parts: the underlying baseline hazard function, often denoted , describing how the risk of event per time unit changes over time at baseline levels of covariates; and the effect parameters, describing how the hazard varies in response to explanatory covariates. A typical medical example would include covariates such as treatment assignment, as well as patient characteristics such as age at start of study, gender, and the presence of other diseases at start of study, in order to reduce variability and/or control for confounding. The proportional hazards condition states that covariates are multiplicatively related to the hazard. In the simplest case of stationary coefficients, for example, a treatment with a drug may, say, halve a subject's hazard at any given time , while the baseline hazard may vary. Note however, that this does not double the lifetime of the subject; the precise effect of the covariates on the lifetime depends on the type of . The covariate is not restricted to binary predictors; in the case of a continuous covariate , it is typically assumed that the hazard responds exponentially; each unit increase in results in proportional scaling of the hazard.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.