Concept

Complete topological vector space

Summary
In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for TVSs, including those that are not metrizable or Hausdorff. Completeness is an extremely important property for a topological vector space to possess. The notions of completeness for normed spaces and metrizable TVSs, which are commonly defined in terms of completeness of a particular norm or metric, can both be reduced down to this notion of TVS-completeness – a notion that is independent of any particular norm or metric. A metrizable topological vector space with a translation invariant metric is complete as a TVS if and only if is a complete metric space, which by definition means that every -Cauchy sequence converges to some point in Prominent examples of complete TVSs that are also metrizable include all F-spaces and consequently also all Fréchet spaces, Banach spaces, and Hilbert spaces. Prominent examples of complete TVS that are (typically) metrizable include strict LF-spaces such as the space of test functions with it canonical LF-topology, the strong dual space of any non-normable Fréchet space, as well as many other polar topologies on continuous dual space or other topologies on spaces of linear maps. Explicitly, a topological vector spaces (TVS) is complete if every net, or equivalently, every filter, that is Cauchy with respect to the space's necessarily converges to some point.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood