In materials science, a polymer matrix composite (PMC) is a composite material composed of a variety of short or continuous fibers bound together by a matrix of organic polymers. PMCs are designed to transfer loads between fibers of a matrix. Some of the advantages with PMCs include their light weight, high resistance to abrasion and corrosion, and high stiffness and strength along the direction of their reinforcements.
The function of the matrix in PMCs is to bond the fibers together and transfer loads between them. PMCs matrices are typically either thermosets or thermoplastics. Thermosets are by far the predominant type in use today. Thermosets are subdivided into several resin systems including epoxies, phenolics, polyurethanes, and polyimides. Of these, epoxy systems currently dominate the advanced composite industry.
Thermoset resins require addition of a curing agent or hardener and impregnation onto a reinforcing material, followed by a curing step to produce a cured or finished part. Once cured, the part cannot be changed or reformed, except for finishing. Some of the more common thermosets include epoxy, polyurethanes, phenolic and amino resins, bismaleimides (BMI, polyimides), polyamides.
Of these, epoxies are the most commonly used in the industry. Epoxy resins have been in use in U.S. industry for over 40 years. Epoxy compounds are also referred to as glycidyl compounds. The epoxy molecule can also be expanded or cross-linked with other molecules to form a wide variety of resin products, each with distinct performance characteristics. These resins range from low-viscosity liquids to high-molecular weight solids. Typically they are high-viscosity liquids.
The second of the essential ingredients of an advanced composite system is the curing agent or hardener. These compounds are very important because they control the reaction rate and determine the performance characteristics of the finished part. Since these compounds act as catalysts for the reaction, they must contain active sites on their molecules.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The latest developments in processing and the novel generations of organic composites are discussed. Nanocomposites, adaptive composites and biocomposites are presented. Product development, cost anal
Introduction to materials structure including crystallography, the structure of amorphous materials such as glasses, polymers and biomaterials as well as the basics of characterization techniques.
The course offers the opportunity to gain practical experience in the characterization of fiber reinforced polymer and manufacturing/production methods for composite structures.
The material is prese
A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions.
Delves into sustainability strategies, the circular economy, and challenges in the composites industry, addressing climate change effects and the role of composites.
Delves into sustainability strategies, circular economy, and the transition to a net-zero economy, emphasizing the role of key industries in reducing carbon emissions.
Explores cost modelling of materials, focusing on technical approaches, automotive case studies, and sustainability, emphasizing the importance of data quality and the impact of weight and emissions on OEMs.
A common method for creating compliant electrodes for dielectric elastomer actuators (DEAs) and soft sensors is to incorporate electrically conductive carbon particles into a polymer matrix. However, using unidirectional aligned carbon fibers instead not o ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024
Frontal polymerisation has the potential to bring unprecedented reductions in energy demand and process time to produce fibre reinforced polymer composites. Production of epoxy-based fibre reinforced polymer parts with high fibre volume content, commonly e ...
Fiber-polymer composites consist of a polymer matrix and reinforcing fibers made of various materials. These composites exhibit exceptional properties, such as a high strength-to-weight ratio and excellent corrosion resistance, which has led to their incre ...