Related concepts (55)
Free category
In mathematics, the free category or path category generated by a directed graph or quiver is the that results from freely concatenating arrows together, whenever the target of one arrow is the source of the next. More precisely, the objects of the category are the vertices of the quiver, and the morphisms are paths between objects. Here, a path is defined as a finite sequence where is a vertex of the quiver, is an edge of the quiver, and n ranges over the non-negative integers.
Category of metric spaces
In , Met is a that has metric spaces as its and metric maps (continuous functions between metric spaces that do not increase any pairwise distance) as its morphisms. This is a category because the composition of two metric maps is again a metric map. It was first considered by . The monomorphisms in Met are the injective metric maps. The epimorphisms are the metric maps for which the domain of the map has a dense in the range. The isomorphisms are the isometries, i.e. metric maps which are injective, surjective, and distance-preserving.
Discrete category
In mathematics, in the field of , a discrete category is a category whose only morphisms are the identity morphisms: homC(X, X) = {idX} for all objects X homC(X, Y) = ∅ for all objects X ≠ Y Since by axioms, there is always the identity morphism between the same object, we can express the above as condition on the cardinality of the hom-set | homC(X, Y) | is 1 when X = Y and 0 when X is not equal to Y. Some authors prefer a weaker notion, where a discrete category merely needs to be equivalent to such a category.
Regular category
In , a regular category is a category with and coequalizers of a pair of morphisms called kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of images, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic. A category C is called regular if it satisfies the following three properties: C is .
Strict 2-category
In , a strict 2-category is a with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category over Cat (the , with the structure given by ). The concept of 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1968 by Jean Bénabou.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.