Free categoryIn mathematics, the free category or path category generated by a directed graph or quiver is the that results from freely concatenating arrows together, whenever the target of one arrow is the source of the next. More precisely, the objects of the category are the vertices of the quiver, and the morphisms are paths between objects. Here, a path is defined as a finite sequence where is a vertex of the quiver, is an edge of the quiver, and n ranges over the non-negative integers.
Category of metric spacesIn , Met is a that has metric spaces as its and metric maps (continuous functions between metric spaces that do not increase any pairwise distance) as its morphisms. This is a category because the composition of two metric maps is again a metric map. It was first considered by . The monomorphisms in Met are the injective metric maps. The epimorphisms are the metric maps for which the domain of the map has a dense in the range. The isomorphisms are the isometries, i.e. metric maps which are injective, surjective, and distance-preserving.
Catégorie discrèteEn théorie des catégories, une branche des mathématiques, une catégorie discrète est une catégorie dont les seuls morphismes sont les identités : homC(X, X) = {idX} pour tout objet X ; homC(X, Y) = ∅ pour tous objets X ≠ Y. L'existence des identités étant imposée par la définition de catégorie, on peut reformuler ce qui précède par une condition sur la cardinalité des ensembles de morphismes : | hom C ( X, Y ) | vaut 1 lorsque X = Y et 0 lorsque X ≠Y . Autrement dit, le nombre de morphismes de chaque ensembles de morphismes est minimal.
Regular categoryIn , a regular category is a category with and coequalizers of a pair of morphisms called kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of images, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic. A category C is called regular if it satisfies the following three properties: C is .
2-catégorieEn mathématiques, et plus particulièrement en théorie des catégories, une 2-catégorie est une catégorie avec des « morphismes entre les morphismes », c'est-à-dire que chaque « ensemble des morphismes » transporte la structure d'une catégorie. Une 2-catégorie peut être formellement définie comme étant une catégorie enrichie au-dessus de Cat (la catégorie des catégories petites et les foncteurs entre elles), avec la structure monoïdale donnée par le produit de deux catégories.