Chronology of the universeThe chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, with an uncertainty of around 21 million years at the 68% confidence level. For the purposes of this summary, it is convenient to divide the chronology of the universe since it originated, into five parts.
Dark energyIn physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the universe does not expand at a constant rate; rather, the universe's expansion is accelerating. Understanding the universe's evolution requires knowledge of its starting conditions and composition. Before these observations, scientists thought that all forms of matter and energy in the universe would only cause the expansion to slow down over time.
Anthropic principleThe anthropic principle, also known as the "observation selection effect", is the hypothesis, first proposed in 1957 by Robert Dicke, that the range of possible observations that could be made about the universe is limited by the fact that observations could only happen in a universe capable of developing intelligent life in the first place. Proponents of the anthropic principle argue that it explains why this universe has the age and the fundamental physical constants necessary to accommodate conscious life, since if either had been different, no one would have been around to make observations.
Cosmic microwave backgroundThe cosmic microwave background (CMB, CMBR) is microwave radiation that fills all space in the observable universe. It is a remnant that provides an important source of data on the primordial universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object.
String theoryIn physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string.
Cosmological constantIn cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: Λ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equations of general relativity. He later removed it. Much later it was revived and reinterpreted as the energy density of space, or vacuum energy, that arises in quantum mechanics. It is closely associated with the concept of dark energy.
Accelerating expansion of the universeObservations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered during 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which both used distant type Ia supernovae to measure the acceleration.
Shape of the universeThe shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes general global properties of its shape as a continuous object. The spatial curvature is described by general relativity, which describes how spacetime is curved due to the effect of gravity.
AxionAn axion (ˈæksiɒn) is a hypothetical elementary particle originally postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter. As shown by Gerard 't Hooft, strong interactions of the standard model, QCD, possess a non-trivial vacuum structure that in principle permits violation of the combined symmetries of charge conjugation and parity, collectively known as CP.
Weakly interacting massive particleWeakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, it is a new elementary particle which interacts via gravity and any other force (or forces), potentially not part of the Standard Model itself, which is as weak as or weaker than the weak nuclear force, but also non-vanishing in its strength.