Summary
The shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes general global properties of its shape as a continuous object. The spatial curvature is described by general relativity, which describes how spacetime is curved due to the effect of gravity. The spatial topology cannot be determined from its curvature, due to the fact that there exist locally indistinguishable spaces that may be endowed with different topological invariants. Cosmologists distinguish between the observable universe and the entire universe, the former being a ball-shaped portion of the latter that can, in principle, be accessible by astronomical observations. Assuming the cosmological principle, the observable universe is similar from all contemporary vantage points, which allows cosmologists to discuss properties of the entire universe with only information from studying their observable universe. The main discussion in this context is whether the universe is finite, like the observable universe, or infinite. Several potential topological and geometric properties of the universe need to be identified. Its topological characterization remains an open problem. Some of these properties are: Boundedness (whether the universe is finite or infinite) Flatness (zero curvature), hyperbolic (negative curvature), or spherical (positive curvature) Connectivity: how the universe is put together as a manifold, i.e., a simply connected space or a multiply connected space. There are certain logical connections among these properties. For example, a universe with positive curvature is necessarily finite. Although it is usually assumed in the literature that a flat or negatively curved universe is infinite, this need not be the case if the topology is not the trivial one. For example, a multiply connected space may be flat and finite, as illustrated by the three-torus.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.