Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise. The main utility of the theory from the physical point of view is a rigorous theoretical explanation of the ubiquitous spontaneous long-range dynamical behavior that manifests itself across disciplines via such phenomena as 1/f, flicker, and crackling noises and the power-law statistics, or Zipf's law, of instantonic processes like earthquakes and neuroavalanches. From the mathematical point of view, STS is interesting because it bridges the two major parts of mathematical physics – the dynamical systems theory and topological field theories. Besides these and related disciplines such as algebraic topology and supersymmetric field theories, STS is also connected with the traditional theory of stochastic differential equations and the theory of pseudo-Hermitian operators.
The theory began with the application of BRST gauge fixing procedure to Langevin SDEs, that was later adapted to classical mechanics and its stochastic generalization, higher-order Langevin SDEs, and, more recently, to SDEs of arbitrary form, which allowed to link BRST formalism to the concept of transfer operators and recognize spontaneous breakdown of BRST supersymmetry as a stochastic generalization of dynamical chaos.
The main idea of the theory is to study, instead of trajectories, the SDE-defined temporal evolution of differential forms. This evolution has an intrinsic BRST or topological supersymmetry representing the preservation of topology and/or the concept of proximity in the phase space by continuous time dynamics. The theory identifies a model as chaotic, in the generalized, stochastic sense, if its ground state is not supersymmetric, i.e., if the supersymmetry is broken spontaneously.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
This first part of the course covers non-equilibrium statistical processes and the treatment of fluctuation dissipation relations by Einstein, Boltzmann and Kubo. Moreover, the fundamentals of Markov
The course gives an overview of atomistic simulation methods, combining theoretical lectures and hands-on sessions. It
covers the basics (molecular dynamics and monte carlo sampling) and also more adv
Pink noise, noise or fractal noise is a signal or process with a frequency spectrum such that the power spectral density (power per frequency interval) is inversely proportional to the frequency of the signal. In pink noise, each octave interval (halving or doubling in frequency) carries an equal amount of noise energy. Pink noise sounds like a waterfall. It is often used to tune loudspeaker systems in professional audio. Pink noise is one of the most commonly observed signals in biological systems.
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations. SDEs have a random differential that is in the most basic case random white noise calculated as the derivative of a Brownian motion or more generally a semimartingale.
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
We introduce the elliptical Ornstein-Uhlenbeck (OU) process, which is a generalisation of the well-known univariate OU process to bivariate time series. This process maps out elliptical stochastic oscillations over time in the complex plane, which are obse ...
INT PRESS BOSTON, INC2023
, ,
In the quest for low power bio-inspired spiking sensors, functional oxides like vanadium dioxide are expected to enable future energy efficient sensing. Here, we report uncooled millimeter-wave spiking detectors based on the sensitivity of insulator-to-met ...