Concept

Duality (projective geometry)

Summary
In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language () and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry. Principle of duality A projective plane C may be defined axiomatically as an incidence structure, in terms of a set P of points, a set L of lines, and an incidence relation I that determines which points lie on which lines. Thes
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading