Concept

Duality (projective geometry)

Summary
In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language () and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry. A projective plane C may be defined axiomatically as an incidence structure, in terms of a set P of points, a set L of lines, and an incidence relation I that determines which points lie on which lines. These sets can be used to define a plane dual structure. Interchange the role of "points" and "lines" in C = (P, L, I) to obtain the dual structure C∗ = (L, P, I∗), where I∗ is the converse relation of I. C∗ is also a projective plane, called the dual plane of C. If C and C∗ are isomorphic, then C is called self-dual. The projective planes PG(2, K) for any field (or, more generally, for every division ring (skewfield) isomorphic to its dual) K are self-dual. In particular, Desarguesian planes of finite order are always self-dual. However, there are non-Desarguesian planes which are not self-dual, such as the Hall planes and some that are, such as the Hughes planes. In a projective plane a statement involving points, lines and incidence between them that is obtained from another such statement by interchanging the words "point" and "line" and making whatever grammatical adjustments that are necessary, is called the plane dual statement of the first. The plane dual statement of "Two points are on a unique line" is "Two lines meet at a unique point".
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.