La dualité projective, découverte par Jean-Victor Poncelet, est une généralisation de l'analogie entre le fait que par deux points distincts passe une droite et une seule, et le fait que deux droites distinctes se coupent en un point et un seul (à condition de se placer en géométrie projective, de sorte que deux droites parallèles se rencontrent en un point à l'infini). La dualité projective affirme que tout théorème de la géométrie projective du plan (donc ne faisant pas appel aux notions métriques de distances et d'angles, ni aux notions affines de parallélisme et de proportion), comme le théorème de Desargues ou le théorème de Pappus, donne naissance à un autre théorème, appelé théorème dual, obtenu en échangeant les mots de points et de droites dans son énoncé.
Contrairement à la géométrie plane classique où les droites sont des ensembles de points, il vaut mieux considérer en géométrie projective que le plan projectif P est constitué d'un ensemble de points , d'un ensemble de droites , et d'une relation indiquant quels points sont sur quelle droite (ou quelles droites passent par quel point). Pour bien comprendre que c'est cette relation qui est importante et non la nature des points et des droites, le mathématicien David Hilbert aurait dit : .
Nous considérons dans un premier temps que le plan projectif P est défini de manière axiomatique ; on constate alors que l'on obtient un autre plan projectif en considérant l'objet P* dont les « points » sont les droites de P et les « droites » sont les points de P, une droite de P* (qui est un point M de P) passant par un « point » de P* (qui est une droite D de P) lorsque D passe par M.
Pour simplifier, au lieu de travailler sur deux plans différents, P et P*, on peut se contenter de travailler sur un seul plan projectif P.
Une corrélation est une transformation des points du plan en droites et des droites du plan en points et qui respecte l'incidence.
Une polarité est une corrélation involutive, c’est-à-dire que la corrélation de la corrélation est la transformation identique.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
En mathématiques, le théorème de Desargues, du nom du mathématicien et architecte Girard Desargues, est un théorème de géométrie projective, qui possède plusieurs variantes en géométrie affine. Il s'énonce uniquement en matière d'alignement de points et d'intersection de droites (voir ci-contre). Le théorème de Desargues se démontre dans un plan ou un espace construit sur un corps quelconque (non nécessairement commutatif).
vignette|Configuration de Pappus : Dans l'hexagone AbCaBc, où les points A, B, C, d'une part et a, b, c d'autre part, sont alignés, les points X, Y, Z le sont aussi. Le théorème de Pappus est un théorème de géométrie concernant l'alignement de trois points : si on considère trois points alignés A, B, C et trois autres points également alignés a, b, c, les points d'intersection des droites (Ab)-(Ba), (Ac)-(Ca), et (Bc)-(Cb) sont également alignés.
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
Palaiseau2024
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desi ...
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...