In geometry, two conic sections are called confocal if they have the same foci.
Because ellipses and hyperbolas have two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. In the mixture of confocal ellipses and hyperbolas, any ellipse intersects any hyperbola orthogonally (at right angles).
Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below).
A circle is an ellipse with both foci coinciding at the center. Circles that share the same focus are called concentric circles, and they orthogonally intersect any line passing through that center.
The formal extension of the concept of confocal conics to surfaces leads to confocal quadrics.
Any hyperbola or (non-circular) ellipse has two foci, and any pair of distinct points in the Euclidean plane and any third point not on line connecting them uniquely determine an ellipse and hyperbola, with shared foci and intersecting orthogonally at the point (See and .)
The foci thus determine two pencils of confocal ellipses and hyperbolas.
By the principal axis theorem, the plane admits a Cartesian coordinate system with its origin at the midpoint between foci and its axes aligned with the axes of the confocal ellipses and hyperbolas. If is the linear eccentricity (half the distance between and then in this coordinate system
Each ellipse or hyperbola in the pencil is the locus of points satisfying the equation
with semi-major axis as parameter. If the semi-major axis is less than the linear eccentricity the equation defines a hyperbola, while if the semi-major axis is greater than the linear eccentricity it defines an ellipse.
Another common representation specifies a pencil of ellipses and hyperbolas confocal with a given ellipse of semi-major axis and semi-minor axis (so that each conic generated by choice of the parameter
If the conic is an ellipse.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions.
In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid by a plane parallel to the axis of symmetry is a parabola. The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane).
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
We investigate cloaking property of negative-index metamaterials in the time-harmonic electromagnetic setting for the so-called doubly complementary media. These are media consisting of negative-index metamaterials in a shell (plasmonic structure) and posi ...
2020
Ultrasound (US) imaging is currently living a revolution. On the one hand, ultrafast US imaging, a novel way of acquiring and producing US images, has paved the way to several advanced imaging modes, e.g. shear-wave elastography, ultrafast Doppler imaging ...