In geometry, two conic sections are called confocal if they have the same foci.
Because ellipses and hyperbolas have two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. In the mixture of confocal ellipses and hyperbolas, any ellipse intersects any hyperbola orthogonally (at right angles).
Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below).
A circle is an ellipse with both foci coinciding at the center. Circles that share the same focus are called concentric circles, and they orthogonally intersect any line passing through that center.
The formal extension of the concept of confocal conics to surfaces leads to confocal quadrics.
Any hyperbola or (non-circular) ellipse has two foci, and any pair of distinct points in the Euclidean plane and any third point not on line connecting them uniquely determine an ellipse and hyperbola, with shared foci and intersecting orthogonally at the point (See and .)
The foci thus determine two pencils of confocal ellipses and hyperbolas.
By the principal axis theorem, the plane admits a Cartesian coordinate system with its origin at the midpoint between foci and its axes aligned with the axes of the confocal ellipses and hyperbolas. If is the linear eccentricity (half the distance between and then in this coordinate system
Each ellipse or hyperbola in the pencil is the locus of points satisfying the equation
with semi-major axis as parameter. If the semi-major axis is less than the linear eccentricity the equation defines a hyperbola, while if the semi-major axis is greater than the linear eccentricity it defines an ellipse.
Another common representation specifies a pencil of ellipses and hyperbolas confocal with a given ellipse of semi-major axis and semi-minor axis (so that each conic generated by choice of the parameter
If the conic is an ellipse.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
En mathématiques, un paraboloïde est une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de centre de symétrie. Certaines sections d'un paraboloïde avec un plan sont des paraboles. D'autres sont, selon le cas, des ellipses ou des hyperboles. On distingue donc les paraboloïdes elliptiques et les paraboloïdes hyperboliques. Cette surface peut s'obtenir en faisant glisser une parabole sur une autre parabole tournant sa concavité dans la même direction.
Explore les sections coniques, telles que les ellipses, les hyperboles et les parabolas, en se concentrant sur leurs propriétés géométriques et algébriques et leurs applications pratiques.
Ultrasound (US) imaging is currently living a revolution. On the one hand, ultrafast US imaging, a novel way of acquiring and producing US images, has paved the way to several advanced imaging modes, e.g. shear-wave elastography, ultrafast Doppler imaging ...
We investigate cloaking property of negative-index metamaterials in the time-harmonic electromagnetic setting for the so-called doubly complementary media. These are media consisting of negative-index metamaterials in a shell (plasmonic structure) and posi ...
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...