Concept

Flat morphism

Summary
In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphism f from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e., is a flat map for all P in X. A map of rings is called flat if it is a homomorphism that makes B a flat A-module. A morphism of schemes is called faithfully flat if it is both surjective and flat. Two basic intuitions regarding flat morphisms are: flatness is a generic property; and the failure of flatness occurs on the jumping set of the morphism. The first of these comes from commutative algebra: subject to some finiteness conditions on f, it can be shown that there is a non-empty open subscheme of Y, such that f restricted to Y′ is a flat morphism (generic flatness). Here 'restriction' is interpreted by means of the fiber product of schemes, applied to f and the inclusion map of into Y. For the second, the idea is that morphisms in algebraic geometry can exhibit discontinuities of a kind that are detected by flatness. For instance, the operation of blowing down in the birational geometry of an algebraic surface, can give a single fiber that is of dimension 1 when all the others have dimension 0. It turns out (retrospectively) that flatness in morphisms is directly related to controlling this sort of semicontinuity, or one-sided jumping. Flat morphisms are used to define (more than one version of) the flat topos, and flat cohomology of sheaves from it. This is a deep-lying theory, and has not been found easy to handle. The concept of étale morphism (and so étale cohomology) depends on the flat morphism concept: an étale morphism being flat, of finite type, and unramified. Consider the affine scheme induced from the obvious morphism of algebras Since proving flatness for this morphism amounts to computing we resolve the complex numbers and tensor by the module representing our scheme giving the sequence of -modules Because t is not a zero divisor we have a trivial kernel, hence the homology group vanishes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.