In the mathematical area of graph theory, Kőnig's theorem, proved by , describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs.
A vertex cover in a graph is a set of vertices that includes at least one endpoint of every edge, and a vertex cover is minimum if no other vertex cover has fewer vertices. A matching in a graph is a set of edges no two of which share an endpoint, and a matching is maximum if no other matching has more edges.
It is obvious from the definition that any vertex-cover set must be at least as large as any matching set (since for every edge in the matching, at least one vertex is needed in the cover). In particular, the minimum vertex cover set is at least as large as the maximum matching set. Kőnig's theorem states that, in any bipartite graph, the minimum vertex cover set and the maximum matching set have in fact the same size.
In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover.
The bipartite graph shown in the above illustration has 14 vertices; a matching with six edges is shown in blue, and a vertex cover with six vertices is shown in red. There can be no smaller vertex cover, because any vertex cover has to include at least one endpoint of each matched edge (as well as of every other edge), so this is a minimum vertex cover. Similarly, there can be no larger matching, because any matched edge has to include at least one endpoint in the vertex cover, so this is a maximum matching. Kőnig's theorem states that the equality between the sizes of the matching and the cover (in this example, both numbers are six) applies more generally to any bipartite graph.
The following proof provides a way of constructing a minimum vertex cover from a maximum matching. Let be a bipartite graph and let be the two parts of the vertex set . Suppose that is a maximum matching for .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers the concept of matroids, focusing on matroid intersection and the properties of subsets of a ground set.
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
In mathematics, Hall's marriage theorem, proved by , is a theorem with two equivalent formulations. In each case, the theorem gives a necessary and sufficient condition for an object to exist: The combinatorial formulation answers whether a finite collection of sets has a transversal—that is, whether an element can be chosen from each set without repetition. Hall's condition is that for any group of sets from the collection, the total unique elements they contain is at least as large as the number of sets in the group.
In graph theory, a fractional matching is a generalization of a matching in which, intuitively, each vertex may be broken into fractions that are matched to different neighbor vertices. Given a graph G = (V, E), a fractional matching in G is a function that assigns, to each edge e in E, a fraction f(e) in [0, 1], such that for every vertex v in V, the sum of fractions of edges adjacent to v is at most 1: A matching in the traditional sense is a special case of a fractional matching, in which the fraction of every edge is either 0 or 1: f(e) = 1 if e is in the matching, and f(e) = 0 if it is not.
In graph theory, the strong perfect graph theorem is a forbidden graph characterization of the perfect graphs as being exactly the graphs that have neither odd holes (odd-length induced cycles of length at least 5) nor odd antiholes (complements of odd holes). It was conjectured by Claude Berge in 1961. A proof by Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas was announced in 2002 and published by them in 2006.
We develop an algorithm to solve the bottleneck assignment problem (BAP) that is amenable to having computation distributed over a network of agents. This consists of exploring how each component of the algorithm can be distributed, with a focus on one com ...
Piscataway2024
This article focuses on spectral methods for recovering communities in temporal networks. In the case of fixed communities, spectral clustering on the simple time-aggregated graph (i.e., the weighted graph formed by the sum of the interactions over all tem ...
We approach the graph generation problem from a spectral perspective by first generating the dominant parts of the graph Laplacian spectrum and then building a graph matching these eigenvalues and eigenvectors. Spectral conditioning allows for direct model ...