**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# State-transition table

Summary

In automata theory and sequential logic, a state-transition table is a table showing what state (or states in the case of a nondeterministic finite automaton) a finite-state machine will move to, based on the current state and other inputs. It is essentially a truth table in which the inputs include the current state along with other inputs, and the outputs include the next state along with other outputs.
A state-transition table is one of many ways to specify a finite-state machine. Other ways include a state diagram.
Common forms
One-dimension
State-transition tables are sometimes one-dimensional tables, also called characteristic tables. They are much more like truth tables than their two-dimensional form. The single dimension indicates inputs, current states, next states and (optionally) outputs associated with the state transitions.
:{| class="wikitable" style="text-align: center;"
|+ State-transition table(S: state, I: input, O: output)
|-
! Input !!

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (2)

Related people

No results

Loading

Loading

Related courses (2)

EE-110: Logic systems (for MT)

Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de synthèse de systèmelogiques sont étudiées et appliquée

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics as diverse as mathematical reasoning, combinatorics, discrete structures & algorithmic thinking.

Related units

No results

Sylvain Calinon, Ajay Kumar Tanwani

Small variance asymptotics is emerging as a useful technique for inference in large scale Bayesian non-parametric mixture models. This paper analyses the online learning of robot manipulation tasks with Bayesian non-parametric mixture models under small variance asymptotics. The analysis yields a scalable online sequence clustering (SOSC) algorithm that is non-parametric in the number of clusters and the subspace dimension of each cluster. SOSC groups the new datapoint in low dimensional subspaces by online inference in a non-parametric mixture of probabilistic principal component analyzers (MPPCA) based on Dirichlet process, and captures the state transition and state duration information online in a hidden semi-Markov model (HSMM) based on hierarchical Dirichlet process. A task-parameterized formulation of our approach autonomously adapts the model to changing environmental situations during manipulation. We apply the algorithm in a teleoperation setting to recognize the intention of the operator and remotely adjust the movement of the robot using the learned model. The generative model is used to synthesize both time-independent and time-dependent behaviours by relying on the principles of shared and autonomous control. Experiments with the Baxter robot yield parsimonious clusters that adapt online with new demonstrations and assist the operator in performing remote manipulation tasks.

2019Sylvain Calinon, Ajay Kumar Tanwani

Small-variance asymptotics is emerging as a useful technique for inference in large-scale Bayesian non-parametric mixture models. This paper analyzes the online learning of robot manipulation tasks with Bayesian non-parametric mixture models under small-variance asymptotics. The analysis yields a scalable online sequence clustering (SOSC) algorithm that is non-parametric in the number of clusters and the subspace dimension of each cluster. SOSC groups the new datapoint in low-dimensional subspaces by online inference in a non-parametric mixture of probabilistic principal component analyzers (MPPCA) based on a Dirichlet process, and captures the state transition and state duration information online in a hidden semi-Markov model (HSMM) based on a hierarchical Dirichlet process. A task-parameterized formulation of our approach autonomously adapts the model to changing environmental situations during manipulation. We apply the algorithm in a teleoperation setting to recognize the intention of the operator and remotely adjust the movement of the robot using the learned model. The generative model is used to synthesize both time-independent and time-dependent behaviors by relying on the principles of shared and autonomous control. Experiments with the Baxter robot yield parsimonious clusters that adapt online with new demonstrations and assist the operator in performing remote manipulation tasks.

Related concepts (6)

Finite-state machine

A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that ca

State diagram

A state diagram is a type of diagram used in computer science and related fields to describe the behavior of systems. State diagrams require that the system described is composed of a finite number

Deterministic finite automaton

In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (

Related lectures (3)