Publication

Reliable decoding of motor state transitions during imagined movement

Abstract

Current non-invasive Brain Machine interfaces commonly rely on the decoding of sustained motor imagery activity. This approach enables a user to control brain-actuated devices by triggering predetermined motor actions. However, despite of its broad range of applications, this paradigm has failed so far to allow a natural and reliable control. As an alternative approach, we investigated the decoding of states transitions of an imagined movement, i.e. rest-to-movement (onset) and movement-to-rest (offset). We show that both transitions can be reliably decoded with accuracies of 71.47% for the onset and 73.31% for the offset (N = 9 subjects). Importantly, these transitions exhibit different neural patterns and need to be decoded independently. Our results indicate that both decoders are able to capture the brain dynamics during imagined movements and that their combined use could provide benefits in terms of accuracy and time precision.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (28)
Phase transition
In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, and in rare cases, plasma. A phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as temperature or pressure.
Turbo code
In information theory, turbo codes (originally in French Turbocodes) are a class of high-performance forward error correction (FEC) codes developed around 1990–91, but first published in 1993. They were the first practical codes to closely approach the maximum channel capacity or Shannon limit, a theoretical maximum for the code rate at which reliable communication is still possible given a specific noise level. Turbo codes are used in 3G/4G mobile communications (e.g.
Low-density parity-check code
In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are , which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel.
Show more
Related publications (32)

Motor state transitions and Breathing in Brain Machine Interfaces

Bastien Orset

Brain-Machine interfaces aim to create a direct neural link between user's brain and machines. This goal has pushed scientists to investigate a large spectrum of applications in the realm of assistive and rehabilitation technologies. However, despite great ...
EPFL2021

Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding

Andreas Peter Burg, Mohammad Rowshan

In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Arikan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called po ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021

From LDPC Block to LDPC Convolutional Codes: Capacity, Stability, and Universality

Wei Liu

In his landmark paper "A Mathematical Theory of Communication," the founding father of information theory and coding theory, Claude E. Shannon, established the largest rate at which reliable communication is possible and he revealed that the key to this re ...
EPFL2019
Show more
Related MOOCs (16)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Show more